Automatic Text Summarization /

Textual information in the form of digital documents quickly accumulates to create huge amounts of data. The majority of these documents are unstructured: it is unrestricted text and has not been organized into traditional databases. Processing documents is therefore a perfunctory task, mostly due t...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Torres-Moreno, Juan-Manuel
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : ISTE ; 2014.
Hoboken, NJ : Wiley, 2014.
Σειρά:Cognitive science and knowledge management series.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 06136nam a2200685 4500
001 ocn892044728
003 OCoLC
005 20170124070846.7
006 m o d
007 cr cnu---unuuu
008 141003s2014 enk ob 001 0 eng d
040 |a IDEBK  |b eng  |e pn  |c IDEBK  |d EBLCP  |d N$T  |d DG1  |d E7B  |d YDXCP  |d CDX  |d OCLCQ  |d RECBK  |d OCLCF  |d DEBSZ  |d COO  |d OCLCQ  |d STF  |d B24X7  |d OCLCO  |d DEBBG  |d D6H  |d OCLCQ  |d GrThAP 
019 |a 959423368 
020 |a 9781119044147  |q (electronic bk.) 
020 |a 1119044146  |q (electronic bk.) 
020 |a 1322166625  |q (electronic bk.) 
020 |a 9781322166629  |q (electronic bk.) 
020 |a 9781119004752  |q (electronic bk.) 
020 |a 1119004756  |q (electronic bk.) 
020 |a 1848216688 
020 |a 9781848216686 
020 |z 9781848216686 
029 1 |a AU@  |b 000053736693 
029 1 |a CHBIS  |b 010441720 
029 1 |a CHNEW  |b 000695430 
029 1 |a CHNEW  |b 000695437 
029 1 |a CHVBK  |b 334089069 
029 1 |a DEBBG  |b BV043397178 
029 1 |a DEBSZ  |b 431789363 
029 1 |a NZ1  |b 15910039 
035 |a (OCoLC)892044728  |z (OCoLC)959423368 
050 4 |a Z695.92 
072 7 |a LAN  |x 025000  |2 bisacsh 
082 0 4 |a 025.4/10285  |2 23 
049 |a MAIN 
100 1 |a Torres-Moreno, Juan-Manuel. 
245 1 0 |a Automatic Text Summarization /  |c Juan-Manuel Torres-Moreno. 
264 1 |a London :  |b ISTE ;  |c 2014. 
264 1 |a Hoboken, NJ :  |b Wiley,  |c 2014. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Cognitive science and knowledge management series 
588 0 |a Print version record. 
504 |a Includes bibliographical references and index. 
520 |a Textual information in the form of digital documents quickly accumulates to create huge amounts of data. The majority of these documents are unstructured: it is unrestricted text and has not been organized into traditional databases. Processing documents is therefore a perfunctory task, mostly due to a lack of standards. It has thus become extremely difficult to implement automatic text analysis tasks. This book can help to process this ever-increasing, difficult-to-handle, mass of information. It examines the motivations and different algorithms for ATS. The author presents the recent state of the art before describing the main problems of ATS, as well as the difficulties and solutions provided by the community. It provides recent advances in ATS, as well as current applications and trends. The approaches are statistical, linguistic and symbolic. Several examples are also included in order to clarify the theoretical concepts. --  |c Edited summary from book. 
505 0 |a Title Page; Copyright; Foreword by A. Zamora and R. Salvador; Foreword by H. Saggion; Notation; Introduction; PART 1: Foundations; 1 Why Summarize Texts?; 1.1. The need for automatic summarization; 1.2. Definitions of text summarization; 1.3. Categorizing automatic summaries; 1.4. Applications of automatic text summarization; 1.5. About automatic text summarization; 1.6. Conclusion; 2 Automatic Text Summarization: Some Important Concepts; 2.1. Processes before the process; 2.2. Extraction, abstraction or compression?; 2.3. Extraction-based summarization; 2.4. Abstract summarization. 
505 8 |a 2.5. Sentence compression and fusion2.6. The limits of extraction; 2.7. The evolution of automatic text summarization tasks; 2.8. Evaluating summaries; 2.9. Conclusion; 3 Single-document Summarization; 3.1. Historical approaches; 3.2. Machine learning approaches; 3.3. State-of-the-art approaches; 3.4. Latent semantic analysis; 3.5. Graph-based approaches; 3.6. DIVTEX: a summarizer based on the divergence of probability distribution; 3.7. CORTEX22; 3.8. ARTEX: another summarizer based on the vectorial model; 3.9. ENERTEX: a summarization system based on textual energy. 
505 8 |a 3.10. Approaches using rhetorical analysis3.11. Summarization by lexical chains; 3.12. Conclusion; 4 Guided Multi-Document Summarization; 4.1. Introduction; 4.2. The problems of multidocument summarization; 4.3. The DUC/TAC tasks for multidocument summarization and INEX Tweet Contextualization; 4.4. The taxonomy of multidocument summarization methods; 4.5. Some multi-document summarization systems and algorithms; 4.6. Update summarization; 4.7. Multi-document summarization by polytopes; 4.8. Redundancy; 4.9. Conclusion; 5 Multi and Cross-lingual Summarization. 
505 8 |a 5.1. Multilingualism, the web and automatic summarization5.2. Automatic multilingual summarization; 5.3. MEAD; 5.4. SUMMARIST; 5.5. COLUMBIA NEWSBLASTER; 5.6. NEWSEXPLORER; 5.7. GOOGLE NEWS; 5.8. CAPS; 5.9. Automatic cross-lingual summarization; 5.10. Conclusion; 6 Source and Domain-Specific Summarization; 6.1. Genre, specialized documents and automatic summarization; 6.2. Automatic summarization and organic chemistry; 6.3. Automatic summarization and biomedicine; 6.4. Summarizing court decisions; 6.5. Opinion summarization; 6.6. Web summarization; 6.7. Conclusion; 7 Text Abstracting. 
505 8 |a 7.1. Abstraction-based automatic summarization7.2. Systems using natural language generation; 7.3. An abstract generator using information extraction; 7.4. Guided summarization and a fully abstractive approach; 7.5. Abstraction-based summarization via conceptual graphs; 7.6. Multisentence fusion; 7.7. Sentence compression; 7.8. Conclusion; 8 Evaluating Document Summaries; 8.1. How can summaries be evaluated?; 8.2. Extrinsic evaluations; 8.3. Intrinsic evaluations; 8.4. TIPSTER SUMMAC evaluation campaigns; 8.5. NTCIR evaluation campaigns; 8.6. DUC/TAC evaluation campaigns. 
650 0 |a Automatic abstracting. 
650 7 |a LANGUAGE ARTS & DISCIPLINES  |x Library & Information Science  |x General.  |2 bisacsh 
650 7 |a Automatic abstracting.  |2 fast  |0 (OCoLC)fst00822691 
655 4 |a Electronic books. 
776 0 8 |i Print version:  |z 9781848216686 
830 0 |a Cognitive science and knowledge management series. 
856 4 0 |u https://doi.org/10.1002/9781119004752  |z Full Text via HEAL-Link 
994 |a 92  |b DG1