Multiple-point Geostatistics : Stochastic Modeling with Training Images.

This book provides a comprehensive introduction to multiple-point geostatistics, where spatial continuity is described using training images. Multiple-point geostatistics aims at bridging the gap between physical modelling/realism and spatio-temporal stochastic modelling. The book provides an overvi...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Mariethoz, Gregoire
Άλλοι συγγραφείς: Caers, Jef
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Hoboken : Wiley, 2014.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05286nam a2200553 4500
001 ocn893332547
003 OCoLC
005 20170124071101.3
006 m o d
007 cr nn|nnnancuu
008 141018s2014 xx o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d DEBSZ  |d DG1  |d OCLCQ  |d OCLCF  |d DEBBG  |d EBLCP  |d OCLCQ  |d GrThAP 
020 |a 9781118662946 
020 |a 1118662946 
020 |a 9781118662953  |q (electronic bk.) 
020 |a 1118662954  |q (electronic bk.) 
029 1 |a DEBBG  |b BV043397211 
029 1 |a DEBSZ  |b 420084789 
029 1 |a DEBSZ  |b 449455556 
029 1 |a NZ1  |b 15914886 
035 |a (OCoLC)893332547 
050 4 |a QE33.2.S82  |b M37 2015 
082 0 4 |a 551.01  |a 551.015195 
049 |a MAIN 
100 1 |a Mariethoz, Gregoire. 
245 1 0 |a Multiple-point Geostatistics :  |b Stochastic Modeling with Training Images. 
264 1 |a Hoboken :  |b Wiley,  |c 2014. 
300 |a 1 online resource (379 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Multiple-point geostatistics; Contents; Preface; Acknowledgments; Part I Concepts; 1 Hiking in the Sierra Nevada; 1.1 An imaginary outdoor adventure company: Buena Sierra; 1.2 What lies ahead; 2 Spatial estimation based on random function theory; 2.1 Assumptions of stationarity; 2.2 Assumption of stationarity in spatial problems; 2.3 The kriging solution; 2.3.1 Unbiasedness condition; 2.3.2 Minimizing squared loss; 2.4 Estimating covariances; 2.5 Semivariogram modeling; 2.6 Using a limited neighborhood; 2.7 Universal kriging; 2.8 Semivariogram modeling for universal kriging. 
505 8 |a 2.9 Simple trend example case2.10 Nonstationary covariances; 2.11 Assessment; References; 3 Universal kriging with training images; 3.1 Choosing for random function theory or not?; 3.2 Formulation of universal kriging with training images; 3.2.1 Zero error-sum condition; 3.2.2 Minimum sum of square error condition; 3.3 Positive definiteness of the sop matrix; 3.4 Simple kriging with training images; 3.5 Creating a map of estimates; 3.6 Effect of the size of the training image; 3.7 Effect of the nature of the training image; 3.8 Training images for nonstationary modeling. 
505 8 |a 3.9 Spatial estimation with nonstationary training images3.10 Summary of methodological differences; References; 4 Stochastic simulations based on random function theory; 4.1 The goal of stochastic simulations; 4.2 Stochastic simulation: Gaussian theory; 4.3 The sequential Gaussian simulation algorithm; 4.4 Properties of multi-Gaussian realizations; 4.5 Beyond Gaussian or beyond covariance?; References; 5 Stochastic simulation without random function theory; 5.1 Direct sampling; 5.1.1 Relying on information theory; 5.1.2 Application of direct sampling to Walker Lake. 
505 8 |a 5.2 The extended normal equation5.2.1 Formulation; 5.2.2 The RAM solution; 5.2.3 Single normal equations simulation for Walker Lake; 5.2.4 The problem of conditioning; 5.3 Simulation by texture synthesis; 5.3.1 Computer graphics; 5.3.2 Image quilting; References; 6 Returning to the Sierra Nevada; Reference; Part II Methods; 1 Introduction; 2 The algorithmic building blocks; 2.1 Grid and pointset representations; 2.2 Multivariate grids; 2.3 Neighborhoods; 2.4 Storage and restitution of data events; 2.4.1 Raw storage of training image; 2.4.2 Cross-correlation based convolution. 
505 8 |a 2.4.3 Partial convolution2.4.4 Tree storage; 2.4.5 List storage; 2.4.6 Clustering of patterns; 2.4.7 Parametric representation of patterns; 2.5 Computing distances; 2.5.1 Norms; 2.5.2 Hausdorff distance; 2.5.3 Invariant distances; 2.5.4 Change of variable; 2.5.5 Distances between distributions; 2.6 Sequential simulation; 2.6.1 Random path; 2.6.2 Unilateral path; 2.6.3 Patch-based methods; 2.6.4 Patch carving; 2.7 Multiple grids; 2.8 Conditioning; 2.8.1 The different types of data; 2.8.2 Different types of data: an example; 2.8.3 Steering proportions; References. 
500 |a 3 Multiple-point geostatistics algorithms. 
520 |a This book provides a comprehensive introduction to multiple-point geostatistics, where spatial continuity is described using training images. Multiple-point geostatistics aims at bridging the gap between physical modelling/realism and spatio-temporal stochastic modelling. The book provides an overview of this new field in three parts. Part I presents a conceptual comparison between traditional random function theory and stochastic modelling based on training images, where random function theory is not always used. Part II covers in detail various algorithms and methodologies starting from basi. 
650 0 |a Geology  |x Statistical methods. 
650 4 |a Geological modeling. 
650 4 |a Geology  |x Statistical methods. 
650 4 |a Geology. 
650 7 |a Geology  |x Statistical methods.  |2 fast  |0 (OCoLC)fst00940698 
655 4 |a Electronic books. 
700 1 |a Caers, Jef. 
776 0 8 |i Print version:  |a Mariethoz, Gregoire.  |t Multiple-point Geostatistics : Stochastic Modeling with Training Images.  |d Hoboken : Wiley, ©2014  |z 9781118662755 
856 4 0 |u https://doi.org/10.1002/9781118662953  |z Full Text via HEAL-Link 
994 |a 92  |b DG1