Aircraft aerodynamic design : geometry and optimization /

"Optimal aircraft design is impossible without a parametric representation of the geometry of the airframe. We need a mathematical model equipped with a set of controls, or design variables, which generates different candidate airframe shapes in response to changes in the values of these variab...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Sóbester, András (Συγγραφέας), Forrester, Alexander I. J. (Συγγραφέας)
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Chichester, England : Wiley, 2015.
Σειρά:Aerospace series (Chichester, England)
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 07605nam a2200745 4500
001 ocn893686414
003 OCoLC
005 20170124071226.4
006 m o d
007 cr cn|||||||||
008 141001t20152015enkao ob 001 0 eng d
040 |a E7B  |b eng  |e rda  |e pn  |c E7B  |d OCLCO  |d DG1  |d OCLCF  |d YDXCP  |d UKMGB  |d EBLCP  |d RECBK  |d DEBSZ  |d B24X7  |d COO  |d OCLCQ  |d DG1  |d GrThAP 
016 7 |a 016821799  |2 Uk 
019 |a 891449986  |a 896838619 
020 |a 9781118534748  |q (electronic bk.) 
020 |a 1118534743  |q (electronic bk.) 
020 |a 9781118534717  |q (e-book) 
020 |a 1118534719  |q (e-book) 
020 |z 9780470662571 
020 |z 9781118534731 
020 |z 1118534735 
020 |a 0470662573 
020 |a 9780470662571 
029 1 |a CHBIS  |b 010441670 
029 1 |a CHVBK  |b 33409187X 
029 1 |a DEBSZ  |b 425891666 
029 1 |a DEBSZ  |b 431786704 
029 1 |a DEBSZ  |b 449450953 
029 1 |a GBVCP  |b 863147011 
035 |a (OCoLC)893686414  |z (OCoLC)891449986  |z (OCoLC)896838619 
050 4 |a TL671.6  |b .S58 2015eb 
072 7 |a TEC  |x 009000  |2 bisacsh 
082 0 4 |a 629.134/1  |2 23 
084 |a TEC002000  |2 bisacsh 
049 |a MAIN 
100 1 |a Sóbester, András,  |e author. 
245 1 0 |a Aircraft aerodynamic design :  |b geometry and optimization /  |c András Sóbester, Alexander Forrester. 
264 1 |a Chichester, England :  |b Wiley,  |c 2015. 
264 4 |c ©2015 
300 |a 1 online resource (265 pages) :  |b illustrations, photographs. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Aerospace Series 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a AIRCRAFT AERODYNAMIC DESIGN; Contents; Series Preface; Preface; 1 Prologue; 2 Geometry Parameterization: Philosophy and Practice; 2.1 A Sense of Scale; 2.1.1 Separating Shape and Scale; 2.1.2 Nondimensional Coefficients; 2.2 Parametric Geometries; 2.2.1 Pre-Optimization Checks; 2.3 What Makes a Good Parametric Geometry: Three Criteria; 2.3.1 Conciseness; 2.3.2 Robustness; 2.3.3 Flexibility; 2.4 A Parametric Fuselage: A Case Study in the Trade-Offs of Geometry Optimization; 2.4.1 Parametric Cross-Sections; 2.4.2 Fuselage Cross-Section Optimization: An Illustrative Example. 
505 8 |a 2.4.3 A Parametric Three-Dimensional Fuselage2.5 A General Observation on the Nature of Fixed-Wing Aircraft Geometry Modelling; 2.6 Necessary Flexibility; 2.7 The Place of a Parametric Geometry in the Design Process; 2.7.1 Optimization: A Hierarchy of Objective Functions; 2.7.2 Competing Objectives; 2.7.3 Optimization Method Selection; 2.7.4 Inverse Design; 3 Curves; 3.1 Conics and Bézier Curves; 3.1.1 Projective Geometry Construction of Conics; 3.1.2 Parametric Bernstein Conic; 3.1.3 Rational Conics and Bézier Curves; 3.1.4 Properties of Bézier Curves; 3.2 Bézier Splines. 
505 8 |a 3.3 Ferguson's Spline3.4 B-Splines; 3.5 Knots; 3.6 Nonuniform Rational Basis Splines; 3.7 Implementation in Rhino; 3.8 Curves for Optimization; 4 Surfaces; 4.1 Lofted, Translated and Coons Surfaces; 4.2 Bézier Surfaces; 4.3 B-Spline and Nonuniform Rational Basis Spline Surfaces; 4.4 Free-Form Deformation; 4.5 Implementation in Rhino; 4.5.1 Nonuniform Rational Basis Splines-Based Surfaces; 4.5.2 Free-Form Deformation; 4.6 Surfaces for Optimization; 5 Aerofoil Engineering: Fundamentals; 5.1 Definitions, Conventions, Taxonomy, Description; 5.2 A 'Non-Taxonomy' of Aerofoils. 
505 8 |a 5.2.1 Low-Speed Aerofoils5.2.2 Subsonic Aerofoils; 5.2.3 Transonic Aerofoils; 5.2.4 Supersonic Aerofoils; 5.2.5 Natural Laminar Flow Aerofoils; 5.2.6 Multi-Element Aerofoils; 5.2.7 Morphing and Flexible Aerofoils; 5.3 Legacy versus Custom-Designed Aerofoils; 5.4 Using Legacy Aerofoil Definitions; 5.5 Handling Legacy Aerofoils: A Practical Primer; 5.6 Aerofoil Families versus Parametric Aerofoils; 6 Families of Legacy Aerofoils; 6.1 The NACA Four-Digit Section; 6.1.1 A One-Variable Thickness Distribution; 6.1.2 A Two-Variable Camber Curve; 6.1.3 Building the Aerofoil; 6.1.4 Nomenclature. 
505 8 |a 6.1.5 A Drawback and Two Fixes6.1.6 The Distribution of Points: Sampling Density Variations and Cusps; 6.1.7 A MATLAB® Implementation; 6.1.8 An OpenNURBS/Rhino-Python Implementation; 6.1.9 Applications; 6.2 The NACA Five-Digit Section; 6.2.1 A Three-Variable Camber Curve; 6.2.2 Nomenclature and Implementation; 6.3 The NACA SC Families; 6.3.1 SC(2); 7 Aerofoil Parameterization; 7.1 Complex Transforms; 7.1.1 The Joukowski Aerofoil; 7.2 Can a Pair of Ferguson Splines Represent an Aerofoil?; 7.2.1 A Simple Parametric Aerofoil; 7.3 Kulfan's Class- and Shape-Function Transformation. 
520 |a "Optimal aircraft design is impossible without a parametric representation of the geometry of the airframe. We need a mathematical model equipped with a set of controls, or design variables, which generates different candidate airframe shapes in response to changes in the values of these variables. This model's objectives are to be flexible and concise, and capable of yielding a wide range of shapes with a minimum number of design variables. Moreover, the process of converting these variables into aircraft geometries must be robust. Alas, flexibility, conciseness and robustness can seldom be achieved simultaneously. Aircraft Aerodynamic Design: Geometry and Optimization addresses this problem by navigating the subtle trade-offs between the competing objectives of geometry parameterization. It beginswith the fundamentals of geometry-centred aircraft design, followed by a review of the building blocks of computational geometries, the curve and surface formulations at the heart of aircraft geometry. The authors then cover a range of legacy formulations in the build-up towards a discussion of the most flexible shape models used in aerodynamic design (with a focus on lift generating surfaces). The book takes a practical approach and includes MATLAB(r), Python and Rhinoceros(r) code, as well as 'real-life' example case studies. Key features: Covers effective geometry parameterization within the context of design optimization Demonstrates how geometry parameterization is an important element of modern aircraft design Includes code and case studies which enable the reader to apply each theoretical concept either as an aid to understanding or as a building block of their own geometry model Accompanied by a website hosting codes Aircraft Aerodynamic Design: Geometry and Optimization is a practical guide for researchers and practitioners in the aerospace industry, and a reference for graduate and undergraduate students in aircraft design and multidisciplinary design optimization"--  |c Provided by publisher. 
650 0 |a Airframes. 
650 0 |a Aerodynamics. 
650 7 |a TECHNOLOGY & ENGINEERING  |x Aeronautics & Astronautics.  |2 bisacsh 
650 7 |a TECHNOLOGY & ENGINEERING  |x Engineering (General)  |2 bisacsh 
650 7 |a Aerodynamics.  |2 fast  |0 (OCoLC)fst00798195 
650 7 |a Airframes.  |2 fast  |0 (OCoLC)fst00802910 
655 4 |a Electronic books. 
655 0 |a Electronic books. 
700 1 |a Forrester, Alexander I. J.,  |e author. 
776 0 8 |i Print version:  |a Sóbester, András.  |t Aircraft aerodynamic design : geometry and optimization.  |d Chichester, England : Wiley, ©2015  |h xv, 246 pages  |k Aerospace series (Chichester, England)  |z 9780470662571  |w (LCCN) 2014026821 
830 0 |a Aerospace series (Chichester, England) 
856 4 0 |u https://doi.org/10.1002/9781118534748  |z Full Text via HEAL-Link 
994 |a 92  |b DG1