Aircraft aerodynamic design : geometry and optimization /

"Optimal aircraft design is impossible without a parametric representation of the geometry of the airframe. We need a mathematical model equipped with a set of controls, or design variables, which generates different candidate airframe shapes in response to changes in the values of these variab...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Sóbester, András (Συγγραφέας), Forrester, Alexander I. J. (Συγγραφέας)
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Chichester, England : Wiley, 2015.
Σειρά:Aerospace series (Chichester, England)
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • AIRCRAFT AERODYNAMIC DESIGN; Contents; Series Preface; Preface; 1 Prologue; 2 Geometry Parameterization: Philosophy and Practice; 2.1 A Sense of Scale; 2.1.1 Separating Shape and Scale; 2.1.2 Nondimensional Coefficients; 2.2 Parametric Geometries; 2.2.1 Pre-Optimization Checks; 2.3 What Makes a Good Parametric Geometry: Three Criteria; 2.3.1 Conciseness; 2.3.2 Robustness; 2.3.3 Flexibility; 2.4 A Parametric Fuselage: A Case Study in the Trade-Offs of Geometry Optimization; 2.4.1 Parametric Cross-Sections; 2.4.2 Fuselage Cross-Section Optimization: An Illustrative Example.
  • 2.4.3 A Parametric Three-Dimensional Fuselage2.5 A General Observation on the Nature of Fixed-Wing Aircraft Geometry Modelling; 2.6 Necessary Flexibility; 2.7 The Place of a Parametric Geometry in the Design Process; 2.7.1 Optimization: A Hierarchy of Objective Functions; 2.7.2 Competing Objectives; 2.7.3 Optimization Method Selection; 2.7.4 Inverse Design; 3 Curves; 3.1 Conics and Bézier Curves; 3.1.1 Projective Geometry Construction of Conics; 3.1.2 Parametric Bernstein Conic; 3.1.3 Rational Conics and Bézier Curves; 3.1.4 Properties of Bézier Curves; 3.2 Bézier Splines.
  • 3.3 Ferguson's Spline3.4 B-Splines; 3.5 Knots; 3.6 Nonuniform Rational Basis Splines; 3.7 Implementation in Rhino; 3.8 Curves for Optimization; 4 Surfaces; 4.1 Lofted, Translated and Coons Surfaces; 4.2 Bézier Surfaces; 4.3 B-Spline and Nonuniform Rational Basis Spline Surfaces; 4.4 Free-Form Deformation; 4.5 Implementation in Rhino; 4.5.1 Nonuniform Rational Basis Splines-Based Surfaces; 4.5.2 Free-Form Deformation; 4.6 Surfaces for Optimization; 5 Aerofoil Engineering: Fundamentals; 5.1 Definitions, Conventions, Taxonomy, Description; 5.2 A 'Non-Taxonomy' of Aerofoils.
  • 5.2.1 Low-Speed Aerofoils5.2.2 Subsonic Aerofoils; 5.2.3 Transonic Aerofoils; 5.2.4 Supersonic Aerofoils; 5.2.5 Natural Laminar Flow Aerofoils; 5.2.6 Multi-Element Aerofoils; 5.2.7 Morphing and Flexible Aerofoils; 5.3 Legacy versus Custom-Designed Aerofoils; 5.4 Using Legacy Aerofoil Definitions; 5.5 Handling Legacy Aerofoils: A Practical Primer; 5.6 Aerofoil Families versus Parametric Aerofoils; 6 Families of Legacy Aerofoils; 6.1 The NACA Four-Digit Section; 6.1.1 A One-Variable Thickness Distribution; 6.1.2 A Two-Variable Camber Curve; 6.1.3 Building the Aerofoil; 6.1.4 Nomenclature.
  • 6.1.5 A Drawback and Two Fixes6.1.6 The Distribution of Points: Sampling Density Variations and Cusps; 6.1.7 A MATLAB® Implementation; 6.1.8 An OpenNURBS/Rhino-Python Implementation; 6.1.9 Applications; 6.2 The NACA Five-Digit Section; 6.2.1 A Three-Variable Camber Curve; 6.2.2 Nomenclature and Implementation; 6.3 The NACA SC Families; 6.3.1 SC(2); 7 Aerofoil Parameterization; 7.1 Complex Transforms; 7.1.1 The Joukowski Aerofoil; 7.2 Can a Pair of Ferguson Splines Represent an Aerofoil?; 7.2.1 A Simple Parametric Aerofoil; 7.3 Kulfan's Class- and Shape-Function Transformation.