Fundamental Math and Physics for Scientists and Engineers.

This text summarizes the core undergraduate physics curriculum together with the mathematics frequently encountered in engineering and physics calculations, focusing on content relevant to practical applications. Covers major undergraduate physics topics including the complete Physics GRE subject ex...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Yevick, David
Άλλοι συγγραφείς: Yevick, Hannah
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Hoboken : Wiley, 2014.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05419nam a2200661 4500
001 ocn897070173
003 OCoLC
005 20170124070422.9
006 m o d
007 cr cnu---unuuu
008 141129s2014 xx o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d IDEBK  |d UKMGB  |d DG1  |d YDXCP  |d DEBSZ  |d RECBK  |d OCLCF  |d DEBBG  |d OCLCQ  |d OCLCO  |d GrThAP 
016 7 |a 016965771  |2 Uk 
019 |a 903611583 
020 |a 9781118979792  |q (electronic bk.) 
020 |a 1118979796  |q (electronic bk.) 
020 |z 9781118979808 
020 |z 111897980X 
029 1 |a CHBIS  |b 010442240 
029 1 |a CHNEW  |b 000889401 
029 1 |a CHVBK  |b 334092787 
029 1 |a CHVBK  |b 374481202 
029 1 |a DEBBG  |b BV042990236 
029 1 |a DEBBG  |b BV043397329 
029 1 |a DEBBG  |b BV043613853 
029 1 |a DEBSZ  |b 422995231 
035 |a (OCoLC)897070173  |z (OCoLC)903611583 
050 4 |a QA39.3 .Y48 2015 
082 0 4 |a 510 
049 |a MAIN 
100 1 |a Yevick, David. 
245 1 0 |a Fundamental Math and Physics for Scientists and Engineers. 
264 1 |a Hoboken :  |b Wiley,  |c 2014. 
300 |a 1 online resource (464 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Fundamental Math and Physics for Scientists and Engineers; Copyright; Contents; Chapter 1 Introduction; Chapter 2 Problem Solving; 2.1 Analysis; 2.2 Test-Taking Techniques; 2.2.1 Dimensional Analysis; Chapter 3 Scientific Programming; 3.1 Language Fundamentals; 3.1.1 Octave Programming; Chapter 4 Elementary Mathematics; 4.1 Algebra; 4.1.1 Equation Manipulation; 4.1.2 Linear Equation Systems; 4.1.3 Factoring; 4.1.4 Inequalities; 4.1.5 Sum Formulas; 4.1.6 Binomial Theorem; 4.2 Geometry; 4.2.1 Angles; 4.2.2 Triangles; 4.2.3 Right Triangles; 4.2.4 Polygons; 4.2.5 Circles. 
505 8 |a 4.3 Exponential, Logarithmic Functions, and Trigonometry4.3.1 Exponential Functions; 4.3.2 Inverse Functions and Logarithms; 4.3.3 Hyperbolic Functions; 4.3.4 Complex Numbers and Harmonic Functions; 4.3.5 Inverse Harmonic and Hyperbolic Functions; 4.3.6 Trigonometric Identities; 4.4 Analytic Geometry; 4.4.1 Lines and Planes; 4.4.2 Conic Sections; 4.4.3 Areas, Volumes, and Solid Angles; Chapter 5 Vectors and Matrices; 5.1 Matrices and Matrix Products; 5.2 Equation Systems; 5.3 Traces and Determinants; 5.4 Vectors and Inner Products; 5.5 Cross and Outer Products; 5.6 Vector Identities. 
505 8 |a 5.7 Rotations and Orthogonal Matrices5.8 Groups and Matrix Generators; 5.9 Eigenvalues and Eigenvectors; 5.10 Similarity Transformations; Chapter 6 Calculus of a Single Variable; 6.1 Derivatives; 6.2 Integrals; 6.3 Series; Chapter 7 Calculus of Several Variables; 7.1 Partial Derivatives; 7.2 Multidimensional Taylor Series and Extrema; 7.3 Multiple Integration; 7.4 Volumes and Surfaces of Revolution; 7.5 Change of Variables and Jacobians; Chapter 8 Calculus of Vector Functions; 8.1 Generalized Coordinates; 8.2 Vector Differential Operators; 8.3 Vector Differential Identities. 
505 8 |a 8.4 Gauss ́s and Stokes ́ Laws and Green ́s Identities8.5 Lagrange Multipliers; Chapter 9 Probability Theory and Statistics; 9.1 Random Variables, Probability Density, and Distributions; 9.2 Mean, Variance, and Standard Deviation; 9.3 Variable Transformations; 9.4 Moments and Moment-Generating Function; 9.5 Multivariate Probability Distributions, Covariance, and Correlation; 9.6 Gaussian, Binomial, and Poisson Distributions; 9.7 Least Squares Regression; 9.8 Error Propagation; 9.9 Numerical Models; Chapter 10 Complex Analysis; 10.1 Functions of a Complex Variable. 
505 8 |a 10.2 Derivatives, Analyticity, and the Cauchy-Riemann Relations10.3 Conformal Mapping; 10.4 Cauchy ́s Theorem and Taylor and Laurent Series; 10.5 Residue Theorem; 10.6 Dispersion Relations; 10.7 Method of Steepest Decent; Chapter 11 Differential Equations; 11.1 Linearity, Superposition, and Initial and Boundary Values; 11.2 Numerical Solutions; 11.3 First-Order Differential Equations; 11.4 Wronskian; 11.5 Factorization; 11.6 Method of Undetermined Coefficients; 11.7 Variation of Parameters; 11.8 Reduction of Order; 11.9 Series Solution and Method of Frobenius. 
500 |a 11.10 Systems of Equations, Eigenvalues, and Eigenvectors. 
520 |a This text summarizes the core undergraduate physics curriculum together with the mathematics frequently encountered in engineering and physics calculations, focusing on content relevant to practical applications. Covers major undergraduate physics topics including the complete Physics GRE subject examination syllabusOverview of key results in undergraduate applied mathematics and introduces scientific programmingPresents simple, coherent derivations and illustrations of fundamental concepts. 
650 0 |a Mathematics. 
650 0 |a Physics. 
650 4 |a Engineers. 
650 4 |a Mathematics. 
650 4 |a Physics. 
650 4 |a Science. 
650 7 |a Mathematics.  |2 fast  |0 (OCoLC)fst01012163 
650 7 |a Physics.  |2 fast  |0 (OCoLC)fst01063025 
655 4 |a Electronic books. 
700 1 |a Yevick, Hannah. 
776 0 8 |i Print version:  |a Yevick, David.  |t Fundamental Math and Physics for Scientists and Engineers.  |d Hoboken : Wiley, ©2014  |z 9780470407844 
856 4 0 |u https://doi.org/10.1002/9781118979792  |z Full Text via HEAL-Link 
994 |a 92  |b DG1