|
|
|
|
LEADER |
05242nam a2200781 4500 |
001 |
ocn900278105 |
003 |
OCoLC |
005 |
20170124070357.6 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
150114s2015 enk ob 001 0 eng |
010 |
|
|
|a 2015001960
|
040 |
|
|
|a DLC
|b eng
|e rda
|e pn
|c DLC
|d YDX
|d OCLCF
|d DG1
|d IDEBK
|d E7B
|d N$T
|d YDXCP
|d CDX
|d COO
|d DEBSZ
|d OCLCQ
|d DEBBG
|d EBLCP
|d GrThAP
|
019 |
|
|
|a 961695942
|a 962723434
|
020 |
|
|
|a 9781118950197
|q (epub)
|
020 |
|
|
|a 1118950194
|q (epub)
|
020 |
|
|
|a 9781118950210
|q (pdf)
|
020 |
|
|
|a 1118950216
|q (pdf)
|
020 |
|
|
|a 9781118950203
|q (electronic bk.)
|
020 |
|
|
|a 1118950208
|q (electronic bk.)
|
020 |
|
|
|a 1118326555
|q (cloth)
|
020 |
|
|
|a 9781118326558
|q (cloth)
|
020 |
|
|
|z 9781118326558
|q (cloth)
|
029 |
1 |
|
|a DEBBG
|b BV042991359
|
029 |
1 |
|
|a DEBSZ
|b 449489965
|
029 |
1 |
|
|a DEBSZ
|b 453328784
|
029 |
1 |
|
|a GBVCP
|b 836347625
|
029 |
1 |
|
|a NLGGC
|b 392752948
|
029 |
1 |
|
|a ZWZ
|b 191455369
|
029 |
1 |
|
|a DEBBG
|b BV043619875
|
029 |
1 |
|
|a DEBBG
|b BV043397457
|
029 |
1 |
|
|a CHVBK
|b 374501378
|
029 |
1 |
|
|a CHNEW
|b 000891217
|
035 |
|
|
|a (OCoLC)900278105
|z (OCoLC)961695942
|z (OCoLC)962723434
|
042 |
|
|
|a pcc
|
050 |
0 |
0 |
|a QA279.5
|
072 |
|
7 |
|a MAT
|x 003000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 029000
|2 bisacsh
|
082 |
0 |
0 |
|a 519.5/42
|2 23
|
049 |
|
|
|a MAIN
|
100 |
1 |
|
|a Blangiardo, Marta.
|
245 |
1 |
0 |
|a Spatial and spatio-temporal Bayesian models with R-INLA /
|c by Marta Blangiardo and Michela Cameletti.
|
264 |
|
1 |
|a Chichester, West Sussex :
|b John Wiley and Sons, Inc.,
|c 2015.
|
300 |
|
|
|a 1 online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Print version record and CIP data provided by publisher; resource not viewed.
|
505 |
0 |
|
|a Title Page; Copyright; Table of Contents; Dedication; Preface; Chapter 1: Introduction; 1.1 Why spatial and spatio-temporal statistics?; 1.2 Why do we use Bayesian methods for modeling spatial and spatio-temporal structures?; 1.3 Why INLA?; 1.4 Datasets; References; Chapter 2: Introduction to R; 2.1 The R language; 2.2 R objects; 2.3 Data and session management; 2.4 Packages; 2.5 Programming in R; 2.6 Basic statistical analysis with R; References; Chapter 3: Introduction to Bayesian methods; 3.1 Bayesian philosophy; 3.2 Basic probability elements; 3.3 Bayes theorem
|
505 |
8 |
|
|a 3.4 Prior and posterior distributions3.5 Working with the posterior distribution; 3.6 Choosing the prior distribution; References; Chapter 4: Bayesian computing; 4.1 Monte Carlo integration; 4.2 Monte Carlo method for Bayesian inference; 4.3 Probability distributions and random number generation in R; 4.4 Examples of Monte Carlo simulation; 4.5 Markov chain Monte Carlo methods; 4.6 The integrated nested Laplace approximations algorithm; 4.7 Laplace approximation; 4.8 The R-INLA package; 4.9 How INLA works: step-by-step example; References
|
505 |
8 |
|
|a Chapter 5: Bayesian regression and hierarchical models5.1 Linear regression; 5.2 Nonlinear regression: random walk; 5.3 Generalized linear models; 5.4 Hierarchical models; 5.5 Prediction; 5.6 Model checking and selection; References; Chapter 6: Spatial modeling; 6.1 Areal data -- GMRF; 6.2 Ecological regression; 6.3 Zero-inflated models; 6.4 Geostatistical data; 6.5 The stochastic partial differential equation approach; 6.6 SPDE within R-INLA; 6.7 SPDE toy example with simulated data; 6.8 More advanced operations through the inla.stack function; 6.9 Prior specification for the stationary case
|
505 |
8 |
|
|a 6.10 SPDE for Gaussian response: Swiss rainfall data6.11 SPDE with nonnormal outcome: malaria in the Gambia; 6.12 Prior specification for the nonstationary case; References; Chapter 7: Spatio-temporal models; 7.1 Spatio-temporal disease mapping; 7.2 Spatio-temporal modeling particulate matter concentration; References; Chapter 8: Advanced modeling; 8.1 Bivariate model for spatially misaligned data; 8.2 Semicontinuous model to daily rainfall; 8.3 Spatio-temporal dynamic models; 8.4 Space-time model lowering the time resolution; References; Index; End User License Agreement
|
650 |
|
0 |
|a Bayesian statistical decision theory.
|
650 |
|
0 |
|a Spatial analysis (Statistics)
|
650 |
|
0 |
|a Asymptotic distribution (Probability theory)
|
650 |
|
0 |
|a R (Computer program language)
|
650 |
|
7 |
|a MATHEMATICS
|x Applied.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Probability & Statistics
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Asymptotic distribution (Probability theory)
|2 fast
|0 (OCoLC)fst00819866
|
650 |
|
7 |
|a Bayesian statistical decision theory.
|2 fast
|0 (OCoLC)fst00829019
|
650 |
|
7 |
|a R (Computer program language)
|2 fast
|0 (OCoLC)fst01086207
|
650 |
|
7 |
|a Spatial analysis (Statistics)
|2 fast
|0 (OCoLC)fst01128784
|
655 |
|
4 |
|a Electronic books.
|
700 |
1 |
|
|a Cameletti, Michela.
|
776 |
0 |
8 |
|i Print version:
|a Blangiardo, Marta.
|t Spatial and spatio-temporal Bayesian models with R-INLA.
|d Chichester, West Sussex : John Wiley and Sons, Inc., 2015
|z 9781118326558
|w (DLC) 2015000696
|
856 |
4 |
0 |
|u https://doi.org/10.1002/9781118950203
|z Full Text via HEAL-Link
|
994 |
|
|
|a 92
|b DG1
|