Spatial and spatio-temporal Bayesian models with R-INLA /

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Blangiardo, Marta
Άλλοι συγγραφείς: Cameletti, Michela
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Chichester, West Sussex : John Wiley and Sons, Inc., 2015.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05242nam a2200781 4500
001 ocn900278105
003 OCoLC
005 20170124070357.6
006 m o d
007 cr |||||||||||
008 150114s2015 enk ob 001 0 eng
010 |a  2015001960 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d YDX  |d OCLCF  |d DG1  |d IDEBK  |d E7B  |d N$T  |d YDXCP  |d CDX  |d COO  |d DEBSZ  |d OCLCQ  |d DEBBG  |d EBLCP  |d GrThAP 
019 |a 961695942  |a 962723434 
020 |a 9781118950197  |q (epub) 
020 |a 1118950194  |q (epub) 
020 |a 9781118950210  |q (pdf) 
020 |a 1118950216  |q (pdf) 
020 |a 9781118950203  |q (electronic bk.) 
020 |a 1118950208  |q (electronic bk.) 
020 |a 1118326555  |q (cloth) 
020 |a 9781118326558  |q (cloth) 
020 |z 9781118326558  |q (cloth) 
029 1 |a DEBBG  |b BV042991359 
029 1 |a DEBSZ  |b 449489965 
029 1 |a DEBSZ  |b 453328784 
029 1 |a GBVCP  |b 836347625 
029 1 |a NLGGC  |b 392752948 
029 1 |a ZWZ  |b 191455369 
029 1 |a DEBBG  |b BV043619875 
029 1 |a DEBBG  |b BV043397457 
029 1 |a CHVBK  |b 374501378 
029 1 |a CHNEW  |b 000891217 
035 |a (OCoLC)900278105  |z (OCoLC)961695942  |z (OCoLC)962723434 
042 |a pcc 
050 0 0 |a QA279.5 
072 7 |a MAT  |x 003000  |2 bisacsh 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 0 |a 519.5/42  |2 23 
049 |a MAIN 
100 1 |a Blangiardo, Marta. 
245 1 0 |a Spatial and spatio-temporal Bayesian models with R-INLA /  |c by Marta Blangiardo and Michela Cameletti. 
264 1 |a Chichester, West Sussex :  |b John Wiley and Sons, Inc.,  |c 2015. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record and CIP data provided by publisher; resource not viewed. 
505 0 |a Title Page; Copyright; Table of Contents; Dedication; Preface; Chapter 1: Introduction; 1.1 Why spatial and spatio-temporal statistics?; 1.2 Why do we use Bayesian methods for modeling spatial and spatio-temporal structures?; 1.3 Why INLA?; 1.4 Datasets; References; Chapter 2: Introduction to R; 2.1 The R language; 2.2 R objects; 2.3 Data and session management; 2.4 Packages; 2.5 Programming in R; 2.6 Basic statistical analysis with R; References; Chapter 3: Introduction to Bayesian methods; 3.1 Bayesian philosophy; 3.2 Basic probability elements; 3.3 Bayes theorem 
505 8 |a 3.4 Prior and posterior distributions3.5 Working with the posterior distribution; 3.6 Choosing the prior distribution; References; Chapter 4: Bayesian computing; 4.1 Monte Carlo integration; 4.2 Monte Carlo method for Bayesian inference; 4.3 Probability distributions and random number generation in R; 4.4 Examples of Monte Carlo simulation; 4.5 Markov chain Monte Carlo methods; 4.6 The integrated nested Laplace approximations algorithm; 4.7 Laplace approximation; 4.8 The R-INLA package; 4.9 How INLA works: step-by-step example; References 
505 8 |a Chapter 5: Bayesian regression and hierarchical models5.1 Linear regression; 5.2 Nonlinear regression: random walk; 5.3 Generalized linear models; 5.4 Hierarchical models; 5.5 Prediction; 5.6 Model checking and selection; References; Chapter 6: Spatial modeling; 6.1 Areal data -- GMRF; 6.2 Ecological regression; 6.3 Zero-inflated models; 6.4 Geostatistical data; 6.5 The stochastic partial differential equation approach; 6.6 SPDE within R-INLA; 6.7 SPDE toy example with simulated data; 6.8 More advanced operations through the inla.stack function; 6.9 Prior specification for the stationary case 
505 8 |a 6.10 SPDE for Gaussian response: Swiss rainfall data6.11 SPDE with nonnormal outcome: malaria in the Gambia; 6.12 Prior specification for the nonstationary case; References; Chapter 7: Spatio-temporal models; 7.1 Spatio-temporal disease mapping; 7.2 Spatio-temporal modeling particulate matter concentration; References; Chapter 8: Advanced modeling; 8.1 Bivariate model for spatially misaligned data; 8.2 Semicontinuous model to daily rainfall; 8.3 Spatio-temporal dynamic models; 8.4 Space-time model lowering the time resolution; References; Index; End User License Agreement 
650 0 |a Bayesian statistical decision theory. 
650 0 |a Spatial analysis (Statistics) 
650 0 |a Asymptotic distribution (Probability theory) 
650 0 |a R (Computer program language) 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Asymptotic distribution (Probability theory)  |2 fast  |0 (OCoLC)fst00819866 
650 7 |a Bayesian statistical decision theory.  |2 fast  |0 (OCoLC)fst00829019 
650 7 |a R (Computer program language)  |2 fast  |0 (OCoLC)fst01086207 
650 7 |a Spatial analysis (Statistics)  |2 fast  |0 (OCoLC)fst01128784 
655 4 |a Electronic books. 
700 1 |a Cameletti, Michela. 
776 0 8 |i Print version:  |a Blangiardo, Marta.  |t Spatial and spatio-temporal Bayesian models with R-INLA.  |d Chichester, West Sussex : John Wiley and Sons, Inc., 2015  |z 9781118326558  |w (DLC) 2015000696 
856 4 0 |u https://doi.org/10.1002/9781118950203  |z Full Text via HEAL-Link 
994 |a 92  |b DG1