Silicon Carbide One-dimensional Nanostructures /

One-dimensional (1D) nanostructures from silicon carbide (SiC) are attracting the scientific community because their combination of excellent intrinsic properties with low dimensionality has tremendous potential for breakthrough applications. Silicon carbide does indeed possess very interesting phys...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Latu-Romain, Laurence, 1980- (Συγγραφέας), Ollivier, Maelig (Συγγραφέας)
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London, UK : Hoboken, NJ : ISTE Ltd ; John Wiley and Sons, Inc., 2015.
Σειρά:Focus series.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Cover; Title Page; Copyright; Contents; Foreword; Introduction; List of Acronyms; 1: Properties of SiC-based One-dimensional Nanostructures; 1.1. Intrinsic properties of silicon carbide; 1.1.1. Crystallographic description; 1.1.1.1. The tetrahedron, base unit of SiC; 1.1.1.2. Polytypism of SiC and Ramsdell notation; 1.1.2. Physical and chemical properties of SiC; 1.1.2.1. General properties; 1.1.2.2. Electronic properties; 1.2. Properties of one-dimensional nanostructures; 1.2.1. Definition and classification; 1.2.1.1. "Hollow" 1D nano-objects; 1.2.1.2. "Full" 1D nano-objects
  • 1.2.2. High surface/volume ratio and its consequences1.2.3. Specific properties at the nano metric scale; 1.3. Conclusion; 2: State of the Art of the Growth of SiC-1D Nanostructures; 2.1. State of the art of the growth of SiC nanowires; 2.1.1. Silicidation of carbon nanotubes; 2.1.2. Synthesis through the VLS mechanism; 2.1.3. Development in the gaseous phase
  • VS mechanism; 2.1.4. Carburization of Si nanowires; 2.1.5. Conclusion on the growth of SiC nanowires; 2.2. State of the art of the growth of SiC nanotubes; 2.3. State of the art of the growth of SiC-based core-shell nanowires
  • 2.3.1. Si-SiC core-shell nanowires2.3.2. Other SiC-based core-shell nanowires; 2.4. Conclusion; 3: An Original Growth Process: The Carburization of Si Nanowires; 3.1. Si nanowires; 3.2. The carburization of bulk silicon; 3.3. Experimental application; 3.3.1. Carburization apparatus; 3.3.2. Methods of characterization; 3.4. Growth of core-shell Si-SiC nanowires; 3.4.1. Introduction; 3.4.2. Experimental study; 3.4.2.1. Preliminary study; 3.4.2.1.1. Experimental condition for the synthesis of core-shell Si-SiC nanowires; 3.4.2.2. Choice of carburization temperature
  • 3.4.2.3. Conformity of the SiC shell3.4.2.4. Influence of the carburization time
  • kinetic study; 3.4.2.5.Carburization of Si NW in a high-purity reactor; 3.4.2.6. Conclusions and perspectives of the state of the art; 3.5. Growth of silicon carbide nanotubes; 3.5.1. Founding idea and experimental application; 3.5.2. A word on the kinetics of carburization; 3.6. Summary of the study of the carburization of silicon nanowires; 3.6.1. Illustration of carburization mechanisms for the growth of Si-SiC nanowires or SiC nanotubes
  • 3.6.2. The carburization of Si NW summarized: construction of an existence domain diagram3.6.3. Criticism of the nanostructures obtained; 4: SiC-Based One-dimensional Nanostructure Technologies; 4.1. Top-down approach: SiC plasma etching for the production of SiC nanowires; 4.2. Mechanics; 4.3. Energy; 4.4. Electronics; 4.4.1. Integration of nanostructures in a nanowire transistor; 4.4.1.1. With regards to the method of extraction of mobilities; 4.5. For biology; 4.6. Future work; Conclusion; Bibliography; Chapter 1; Chapter 2; Chapter 3; Chapter 4; Index