Process intensification for sustainable energy conversion /

Λεπτομέρειες βιβλιογραφικής εγγραφής
Άλλοι συγγραφείς: Gallucci, Fausto, Sint Annaland, Martin van
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Chichester, West Sussex, United Kingdom : Wiley, 2015.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05595nam a2200709 4500
001 ocn906172180
003 OCoLC
005 20170124071155.8
006 m o d
007 cr |||||||||||
008 150401s2015 enk ob 001 0 eng
010 |a  2015013228 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d N$T  |d IDEBK  |d DG1  |d RECBK  |d E7B  |d YDXCP  |d DEBSZ  |d CDX  |d COO  |d OCLCQ  |d OCLCF  |d EBLCP  |d DG1  |d GrThAP 
019 |a 912319719  |a 959868943 
020 |a 9781118449370  |q (epub) 
020 |a 1118449371  |q (epub) 
020 |a 9781118449387  |q (pdf) 
020 |a 111844938X  |q (pdf) 
020 |a 9781118449394 
020 |a 1118449398 
020 |a 1118449355  |q (cloth) 
020 |a 9781118449356  |q (cloth) 
020 |z 9781118449356  |q (cloth) 
029 1 |a CHBIS  |b 010471141 
029 1 |a CHVBK  |b 336873654 
029 1 |a DEBSZ  |b 433558490 
029 1 |a GBVCP  |b 829889132 
035 |a (OCoLC)906172180  |z (OCoLC)912319719  |z (OCoLC)959868943 
042 |a pcc 
050 0 0 |a TP155.7 
072 7 |a SCI  |x 013060  |2 bisacsh 
072 7 |a TEC  |x 009010  |2 bisacsh 
082 0 0 |a 660/.28  |2 23 
049 |a MAIN 
245 0 0 |a Process intensification for sustainable energy conversion /  |c edited by Fausto Gallucci, Chemical Process Intensification, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, the Netherlands and Martin van Sint Annaland. 
264 1 |a Chichester, West Sussex, United Kingdom :  |b Wiley,  |c 2015. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b n  |2 rdamedia 
338 |a online resource  |b nc  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record and CIP data provided by publisher. 
505 0 |a Title Page; Copyright; Table of Contents; Preface; List of Contributors; Chapter 1: Introduction; References; Chapter 2: Cryogenic CO2 Capture; 2.1 Introduction -- CCS and Cryogenic Systems; 2.2 Cryogenic Packed Bed Process Concept; 2.3 Detailed Numerical Model; 2.4 Small-Scale Demonstration (Proof of Principle); 2.5 Experimental Demonstration of the Novel Process Concept in a Pilot-Scale Set-Up; 2.6 Techno-Economic Evaluation; 2.7 Conclusions; 2.8 Note for the Reader; References; Chapter 3: Novel Pre-Combustion Power Production: Membrane Reactors; 3.1 Introduction 
505 8 |a 3.2 The Membrane Reactor Concept3.3 Types of Reactors; 3.4 Conclusions; 3.5 Note for the reader; References; Chapter 4: Oxy Fuel Combustion Power Production Using High Temperature O2 Membranes; 4.1 Introduction; 4.2 MIEC Perovskites as Oxygen Separation Membrane Materials for the Oxy-fuel Combustion Power Production; 4.3 MIEC Membrane Fabrication; 4.4 High-temperature ceramic oxygen separation membrane system on laboratory scale; 4.5 Integration of High-Temperature O2 Transport Membranes into Oxy-Fuel Process: Real World and Economic Feasibility; References 
505 8 |a Chapter 5: Chemical Looping Combustion for Power Production5.1 Introduction; 5.2 Oxygen carriers; 5.3 Reactor Concepts; 5.4 The Integration of CLC Reactor in Power Plant; 5.5 Conclusions; References; Chapter 6: Sorption-Enhanced Fuel Conversion; 6.1 Introduction; 6.2 Development in Sorption-Enhanced Processes; 6.3 Sorbent Development; 6.4 Process Descriptions; 6.5 Sorption-Enhanced Reaction Processes in Power Plant for CO2 Capture; 6.6 Conclusions; References; Chapter 7: Pd-Based Membranes in Hydrogen Production for Fuel cells; 7.1 Introduction 
505 8 |a 7.2 Characteristics of Fuel Cells and Applications7.3 Centralized and Distributed Hydrogen Production for Energy Applications; 7.4 Pd-Based Membranes; 7.5 Hydrogen Production Using Pd-Based Membranes; 7.6 Process Intensification by Microstructured Membrane Reactors; 7.7 Integration of Pd-Based Membranes and Fuel Cells; 7.8 Final Remarks; Acknowledgements; References; Chapter 8: From Biomass to SNG; 8.1 Introduction; 8.2 Current Status of Bio-SNG Production and Facilities in Europe; 8.3 Bio-SNG Process Configuration; 8.4 Catalytic Systems; 8.5 The Case Study; 8.6 Chemical Efficiency 
505 8 |a 8.7 ConclusionsReferences; Chapter 9: Blue Energy: Salinity Gradient for Energy Conversion; 9.1 Introduction; 9.2 Fundamentals of Salinity Gradient Exploitation; 9.3 Pressure Retarded Osmosis Technology; 9.4 The Reverse Electrodialysis Technology; 9.5 Other Salinity Gradient Technologies; 9.6 Osmotic Power Plants Potential; 9.7 Conclusions; References; Chapter 10: Solar Process Heat and Process Intensification; 10.1 Solar Process Heat -- A Short Technology Review; 10.2 Potential of Solar Process Heat in Industry; 10.3 Bottlenecks for Integration of Solar Process Heat in Industry 
505 8 |a 10.4 PI -- A Promising Approach to Increase the Solar Process Heat Potential? 
650 0 |a Chemical processes. 
650 0 |a Renewable energy sources. 
650 0 |a Green chemistry. 
650 7 |a SCIENCE  |x Chemistry  |x Industrial & Technical.  |2 bisacsh 
650 7 |a TECHNOLOGY & ENGINEERING  |x Chemical & Biochemical.  |2 bisacsh 
650 7 |a Chemical processes.  |2 fast  |0 (OCoLC)fst00853156 
650 7 |a Green chemistry.  |2 fast  |0 (OCoLC)fst00912867 
650 7 |a Renewable energy sources.  |2 fast  |0 (OCoLC)fst01094570 
655 4 |a Electronic books. 
700 1 |a Gallucci, Fausto. 
700 1 |a Sint Annaland, Martin van. 
776 0 8 |i Print version:  |t Process intensification for sustainable energy conversion.  |d Hoboken : John Wiley and Sons, Inc., 2015  |z 9781118449356  |w (DLC) 2015009730 
856 4 0 |u https://doi.org/10.1002/9781118449394  |z Full Text via HEAL-Link 
994 |a 92  |b DG1