Artificial transmission lines for RF and microwave applications /

"This book presents and discusses alternatives to ordinary transmission lines for the design and implementation of advanced RF/microwave components in planar technology"--

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Martín, Ferran, 1965-
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Hoboken : John Wiley and Sons, Inc., 2015.
Σειρά:Wiley series in microwave and optical engineering.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 08981nam a2200649 4500
001 ocn906172200
003 OCoLC
005 20170124071156.3
006 m o d
007 cr |||||||||||
008 150401s2015 nju ob 001 0 eng
010 |a  2015013267 
040 |a DLC  |b eng  |e rda  |c DLC  |d N$T  |d EBLCP  |d OCLCF  |d DG1  |d YDXCP  |d DEBSZ  |d IDEBK  |d COO  |d OCLCO  |d OCLCQ  |d DEBBG  |d KSU  |d RECBK  |d CCO  |d GrThAP 
020 |a 9781119058335 (pdf) 
020 |a 1119058333 (pdf) 
020 |a 9781119058373 (epub) 
020 |a 1119058376 (epub) 
020 |z 9781118487600 (hardback) 
020 |a 9781119058403 
020 |a 1119058406 
020 |a 1118487605 
020 |a 9781118487600 
029 1 |a DEBSZ  |b 442835930 
029 1 |a AU@  |b 000054513993 
029 1 |a GBVCP  |b 832459801 
029 1 |a DEBBG  |b BV043397676 
035 |a (OCoLC)906172200 
042 |a pcc 
050 0 0 |a TK6565.T73 
072 7 |a TEC  |x 009070  |2 bisacsh 
082 0 0 |a 621.3841/3  |2 23 
084 |a TEC024000  |2 bisacsh 
049 |a MAIN 
100 1 |a Martín, Ferran,  |d 1965- 
245 1 0 |a Artificial transmission lines for RF and microwave applications /  |c Ferran Martin. 
264 1 |a Hoboken :  |b John Wiley and Sons, Inc.,  |c 2015. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b n  |2 rdamedia 
338 |a online resource  |b nc  |2 rdacarrier 
490 1 |a Wiley series in microwave and optical engineering 
520 |a "This book presents and discusses alternatives to ordinary transmission lines for the design and implementation of advanced RF/microwave components in planar technology"--  |c Provided by publisher. 
504 |a Includes bibliographical references and index. 
500 |a Machine generated contents note: Preface Acknowledgments 1. Fundamentals of Planar Transmission Lines 1.1 Planar transmission lines, distributed circuits and artificial transmission lines 1.2 Distributed circuit analysis and main transmission line parameters 1.3 Loaded (terminated) transmission lines 1.4 Lossy transmission lines 1.5 Comparative analysis of planar transmission lines 1.6 Some illustrative applications of planar transmission lines References 2. Artificial Transmission Lines based on Periodic Structures 2.1 Introduction and scope 2.2 Floquet analysis of periodic structures 2.3 The transfer matrix method 2.4 Coupled mode theory 2.5 Applications References 3. Metamaterial Transmission Lines: Fundamentals, Theory, Circuit Models, and Main Implementations 3.1 Introduction, terminology, and scope 3.2 Effective medium metamaterials 3.3 Electrically small resonators for metamaterials and microwave circuit design 3.4 Canonical models of metamaterial transmission lines 3.5 Implementation of metamaterial transmission lines and lumped element equivalent circuit models References 4. Metamaterial Transmission Lines: RF/Microwave Applications 4.1 Introduction 4.2 Applications of CRLH transmission lines 4.3 Transmission lines with metamaterial loading and applications References 5. Reconfigurable, Tunable and Nonlinear Artificial Transmission Lines 5.1 Introduction 5.2 Materials, components and technologies to implement tunable devices 5.3 Tunable and reconfigurable metamaterial transmission lines and applications 5.4 Nonlinear transmission lines (NLTLs) References 6. Other Advanced Transmission Lines 6.1 Introduction 6.2 Magnetoinductive-wave (MIW) and electroinductive-wave (EIW) delay lines 6.3 Balanced transmission lines with common-mode suppression 6.4 Wideband artificial transmission lines 6.5 Substrate integrated waveguides (SIW) and their application to metamaterial transmission lines References Appendixes Appendix A. Equivalence between plane wave propagation in source-free, linear, isotropic and homogeneous media, TEM wave propagation in transmission lines and wave propagation in transmission lines described by its distributed circuit model Appendix B. The Smith Chart Appendix C. The scattering matrix Appendix D. Current density distribution in a conductor Appendix E. Derivation of the simplified coupled mode equations and coupling coefficient from the distributed circuit model of a transmission line Appendix F. Averaging the effective dielectric constant in EBG-based transmission lines Appendix G. Parameter extraction G.1 Parameter extraction in CSRR-loaded lines G.2 Parameter extraction in SRR-loaded lines G.3 Parameter extraction in OSRR-loaded lines G.4 Parameter extraction in OCSRR-loaded lines Appendix H. Synthesis of resonant type metamaterial transmission lines by means of Aggressive Space Mapping (ASM) H.1 General formulation of ASM H.2 Determination of the convergence region in the coarse model space H.3 Determination of the initial layout H.4 The core ASM algorithm H.5 Illustrative examples and convergence speed Appendix I. Conditions to obtain all-pass X-type and bridged-T networks Index . 
588 |a Description based on print version record and CIP data provided by publisher. 
505 0 |a Preface -- Acknowledgments -- 1. Fundamentals of planar transmission lines. 1.1. Planar transmission lines, distributed circuits and artificial transmission lines ; 1.2. Distributed circuit analysis and main transmission line parameters ; 1.3. Loaded (terminated) transmission lines ; 1.4. Lossy transmission lines ; 1.5. Comparative analysis of planar transmission lines ; 1.6. Some illustrative applications of planar transmission lines ; References -- 2. Artificial transmission lines based on periodic structures. 2.1. Introduction and scope ; 2.2. Floquet analysis of periodic structures ; 2.3. The transfer matrix method ; 2.4. Coupled mode theory ; 2.5. Applications ; References -- 3. Metamaterial transmission lines: fundamentals, theory, circuit models, and main implementations. 3.1. Introduction, terminology, and scope ; 3.2. Effective medium metamaterials ; 3.3. Electrically small resonators for metamaterials and microwave circuit design ; 3.4. Canonical models of metamaterial transmission lines ; 3.5. Implementation of metamaterial transmission lines and lumped element equivalent circuit models ; References -- 4. Metamaterial transmission lines: RF/microwave applications. 4.1. Introduction ; 4.2. Applications of CRLH transmission lines ; 4.3. Transmission lines with metamaterial loading and applications ; References -- 5. Reconfigurable, tunable and nonlinear artificial transmission lines. 5.1. Introduction ; 5.2. Materials, components and technologies to implement tunable devices ; 5.3. Tunable and reconfigurable metamaterial transmission lines and applications ; 5.4. Nonlinear transmission lines (NLTLs) ; References -- 6. Other advanced transmission lines. 6.1. Introduction ; 6.2. Magnetoinductive-wave (MIW) and electroinductive-wave (EIW) delay lines ; 6.3. Balanced transmission lines with common-mode suppression ; 6.4. Wideband artificial transmission lines ; 6.5. Substrate integrated waveguides (SIW) and their application to metamaterial transmission lines ; References -- Appendixes. Appendix A. Equivalence between plane wave propagation in source-free, linear, isotropic and homogeneous media, TEM wave propagation in transmission lines and wave propagation in transmission lines described by its distributed circuit model ; Appendix B. The Smith Chart ; Appendix C. The scattering matrix ; Appendix D. Current density distribution in a conductor ; Appendix E. Derivation of the simplified coupled mode equations and coupling coefficient from the distributed circuit model of a transmission line ; Appendix F. Averaging the effective dielectric constant in EBG-based transmission lines ; Appendix G. Parameter extraction. G.1 Parameter extraction in CSRR-loaded lines ; G.2 Parameter extraction in SRR-loaded lines ; G.3 Parameter extraction in OSRR-loaded lines ; G.4 Parameter extraction in OCSRR-loaded lines ; Appendix H. Synthesis of resonant type metamaterial transmission lines by means of Aggressive Space Mapping (ASM). H.1 General formulation of ASM ; H.2 Determination of the convergence region in the coarse model space ; H.3 Determination of the initial layout ; H.4 The core ASM algorithm ; H.5 Illustrative examples and convergence speed ; Appendix I. Conditions to obtain all-pass X-type and bridged-T networks -- Index . 
650 0 |a Radio lines. 
650 0 |a Microwave transmission lines. 
650 7 |a TECHNOLOGY & ENGINEERING / Microwaves.  |2 bisacsh 
650 7 |a Microwave transmission lines.  |2 fast  |0 (OCoLC)fst01020254 
650 7 |a Radio lines.  |2 fast  |0 (OCoLC)fst01087400 
655 4 |a Electronic books. 
655 0 |a Electronic books. 
776 0 8 |i Print version:  |a Martín, Ferran, 1965-  |t Artificial transmission lines for RF and microwave applications  |d Hoboken : John Wiley and Sons, Inc., 2015  |z 9781118487600  |w (DLC) 2015007897 
830 0 |a Wiley series in microwave and optical engineering. 
856 4 0 |u https://doi.org/10.1002/9781119058403  |z Full Text via HEAL-Link 
994 |a 92  |b DG1