In-vitro materials design : modern atomistic simulation methods for engineers /

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Leitsmann, Roman (Συγγραφέας), Planitz, Philipp (Συγγραφέας), Schreiber, Michael, 1954- (Συγγραφέας)
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Weinheim, Germany : Wiley-VCH, [2015]
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 06216nam a2200577 4500
001 ocn908685727
003 OCoLC
005 20170124071301.6
006 m o d
007 cr cnu|||unuuu
008 150511s2015 gw ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d IDEBK  |d DG1  |d RECBK  |d CDX  |d COO  |d VRC  |d UPM  |d DEBSZ  |d DEBBG  |d GrThAP 
020 |a 9783527667352  |q electronic bk. 
020 |a 3527667350  |q electronic bk. 
020 |a 9783527667383  |q electronic bk. 
020 |a 3527667385  |q electronic bk. 
020 |z 9783527334230 
020 |a 3527334238 
020 |a 9783527334230 
029 1 |a AU@  |b 000055511298 
029 1 |a DEBSZ  |b 453343805 
029 1 |a DEBBG  |b BV042991527 
029 1 |a DEBBG  |b BV043397778 
035 |a (OCoLC)908685727 
050 4 |a TA403 
072 7 |a TEC  |x 009000  |2 bisacsh 
072 7 |a TEC  |x 035000  |2 bisacsh 
082 0 4 |a 620.1/1  |2 23 
049 |a MAIN 
100 1 |a Leitsmann, Roman,  |e author. 
245 1 0 |a In-vitro materials design :  |b modern atomistic simulation methods for engineers /  |c Roman Leitsmann, Philipp Plänitz, and Michael Schreiber. 
264 1 |a Weinheim, Germany :  |b Wiley-VCH,  |c [2015] 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Vendor-supplied metadata. 
505 0 |a Machine generated contents note: pt. I Basic Physical and Mathematical Principles -- 1.Introduction -- 2.Newtonian Mechanics and Thermodynamics -- 2.1.Equation of Motion -- 2.2.Energy Conservation -- 2.3.Many Body Systems -- 2.4.Thermodynamics -- 3.Operators and Fourier Transformations -- 3.1.Complex Numbers -- 3.2.Operators -- 3.3.Fourier Transformation -- 4.Quantum Mechanical Concepts -- 4.1.Heuristic Derivation -- 4.2.Stationary Schrodinger Equation -- 4.3.Expectation Value and Uncertainty Principle -- 5.Chemical Properties and Quantum Theory -- 5.1.Atomic Model -- 5.2.Molecular Orbital Theory -- 6.Crystal Symmetry and Bravais Lattice -- 6.1.Symmetry in Nature -- 6.2.Symmetry in Molecules -- 6.3.Symmetry in Crystals -- 6.4.Bloch Theorem and Band Structure -- pt. II Computational Methods -- 7.Introduction -- 8.Classical Simulation Methods -- 8.1.Molecular Mechanics -- 8.2.Simple Force-Field Approach -- 8.3.Reactive Force-Field Approach -- 9.Quantum Mechanical Simulation Methods -- 9.1.Born -- Oppenheimer Approximation and Pseudopotentials -- 9.2.Hartree -- Fock Method -- 9.3.Density Functional Theory -- 9.4.Meaning of the Single-Electron Energies within DFT and HF -- 9.5.Approximations for the Exchange -- Correlation Functional Exc -- 9.5.1.Local Density Approximation -- 9.5.2.Generalized Gradient Approximation -- 9.5.3.Hybrid Functionals -- 9.6.Wave Function Representations -- 9.6.1.Real-Space Representation -- 9.6.2.Plane Wave Representation -- 9.6.3.Local Basis Sets -- 9.6.4.Combined Basis Sets -- 9.7.Concepts Beyond HF and DFT -- 9.7.1.Quasiparticle Shift and the GW Approximation -- 9.7.2.Scissors Shift -- 9.7.3.Excitonic Effects -- 9.7.4.TDDFT -- 9.7.5.Post-Hartree -- Fock Methods -- 9.7.5.1.Configuration Interaction (CI) -- 9.7.5.2.Coupled Cluster (CC) -- 9.7.5.3.Møller -- Plesset Perturbation Theory (MPn) -- 10.Multiscale Approaches -- 10.1.Coarse-Grained Approaches -- 10.2.QM/MM Approaches -- 11.Chemical Reactions -- 11.1.Transition State Theory -- 11.2.Nudged Elastic Band Method -- pt. III Industrial Applications -- 12.Introduction -- 13.Microelectronic CMOS Technology -- 13.1.Introduction -- 13.2.Work Function Tunability in High-K Gate Stacks -- 13.2.1.Concrete Problem and Goal -- 13.2.2.Simulation Approach -- 13.2.3.Modeling of the Bulk Materials -- 13.2.4.Construction of the HKMG Stack Model -- 13.2.5.Calculation of the Band Alignment -- 13.2.6.Simulation Results and Practical Impact -- 13.3.Influence of Defect States in High-K Gate Stacks -- 13.3.1.Concrete Problem and Goal -- 13.3.2.Simulation Approach and Model System -- 13.3.3.Calculation of the Charge Transition Level -- 13.3.4.Simulation Results and Practical Impact -- 13.4.Ultra-Low-K Materials in the Back-End-of-Line -- 13.4.1.Concrete Problem and Goal -- 13.4.2.Simulation Approach -- 13.4.3.The Silylation Process: Preliminary Considerations -- 13.4.4.Simulation Results and Practical Impact -- 14.Modeling of Chemical Processes -- 14.1.Introduction -- 14.2.GaN Crystal Growth -- 14.2.1.Concrete Problem and Goal -- 14.2.2.Simulation Approach -- 14.2.3.ReaxFF Parameter Training Scheme -- 14.2.4.Set of Training Structures: ab initio Modeling -- 14.2.5.Model System for the Growth Simulations -- 14.2.6.Results and Practical Impact -- 14.3.Intercalation of Ions into Cathode Materials -- 14.3.1.Concrete Problem and Goal -- 14.3.2.Simulation Approach -- 14.3.3.Calculation of the Cell Voltage -- 14.3.4.Obtained Structural Properties of Lix V2 O5 -- 14.3.5.Results for the Cell Voltage -- 15.Properties of Nanostructured Materials -- 15.1.Introduction -- 15.2.Embedded PbTe Quantum Dots -- 15.2.1.Concrete Problem and Goal -- 15.2.2.Simulation Approach -- 15.2.3.Equilibrium Crystal Shape and Wulff Construction -- 15.2.4.Modeling of the Embedded PbTe Quantum Dots -- 15.2.5.Obtained Structural Properties -- 15.2.6.Internal Electric Fields and the Quantum Confined Stark Effect -- 15.3.Nanomagnetism -- 15.3.1.Concrete Problem and Goal -- 15.3.2.Construction of the Silicon Quantum Dots -- 15.3.3.Ab initio Simulation Approach -- 15.3.4.Calculation of the Formation Energy -- 15.3.5.Resulting Stability Properties -- 15.3.6.Obtained Magnetic Properties. 
650 0 |a Materials science. 
650 0 |a Materials  |x Design. 
650 0 |a Materials  |x Simulation methods. 
650 0 |a Materials  |x Models. 
650 7 |a TECHNOLOGY & ENGINEERING / Engineering (General)  |2 bisacsh 
650 7 |a TECHNOLOGY & ENGINEERING / Reference  |2 bisacsh 
655 4 |a Electronic books. 
700 1 |a Planitz, Philipp,  |e author. 
700 1 |a Schreiber, Michael,  |d 1954-  |e author. 
776 0 8 |i Erscheint auch als:  |a Leitsmann, Roman, 1979  |t In-vitro materials design 
856 4 0 |u https://doi.org/10.1002/9783527667352  |z Full Text via HEAL-Link 
994 |a 92  |b DG1