|
|
|
|
LEADER |
06216nam a2200577 4500 |
001 |
ocn908685727 |
003 |
OCoLC |
005 |
20170124071301.6 |
006 |
m o d |
007 |
cr cnu|||unuuu |
008 |
150511s2015 gw ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d N$T
|d IDEBK
|d DG1
|d RECBK
|d CDX
|d COO
|d VRC
|d UPM
|d DEBSZ
|d DEBBG
|d GrThAP
|
020 |
|
|
|a 9783527667352
|q electronic bk.
|
020 |
|
|
|a 3527667350
|q electronic bk.
|
020 |
|
|
|a 9783527667383
|q electronic bk.
|
020 |
|
|
|a 3527667385
|q electronic bk.
|
020 |
|
|
|z 9783527334230
|
020 |
|
|
|a 3527334238
|
020 |
|
|
|a 9783527334230
|
029 |
1 |
|
|a AU@
|b 000055511298
|
029 |
1 |
|
|a DEBSZ
|b 453343805
|
029 |
1 |
|
|a DEBBG
|b BV042991527
|
029 |
1 |
|
|a DEBBG
|b BV043397778
|
035 |
|
|
|a (OCoLC)908685727
|
050 |
|
4 |
|a TA403
|
072 |
|
7 |
|a TEC
|x 009000
|2 bisacsh
|
072 |
|
7 |
|a TEC
|x 035000
|2 bisacsh
|
082 |
0 |
4 |
|a 620.1/1
|2 23
|
049 |
|
|
|a MAIN
|
100 |
1 |
|
|a Leitsmann, Roman,
|e author.
|
245 |
1 |
0 |
|a In-vitro materials design :
|b modern atomistic simulation methods for engineers /
|c Roman Leitsmann, Philipp Plänitz, and Michael Schreiber.
|
264 |
|
1 |
|a Weinheim, Germany :
|b Wiley-VCH,
|c [2015]
|
300 |
|
|
|a 1 online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Vendor-supplied metadata.
|
505 |
0 |
|
|a Machine generated contents note: pt. I Basic Physical and Mathematical Principles -- 1.Introduction -- 2.Newtonian Mechanics and Thermodynamics -- 2.1.Equation of Motion -- 2.2.Energy Conservation -- 2.3.Many Body Systems -- 2.4.Thermodynamics -- 3.Operators and Fourier Transformations -- 3.1.Complex Numbers -- 3.2.Operators -- 3.3.Fourier Transformation -- 4.Quantum Mechanical Concepts -- 4.1.Heuristic Derivation -- 4.2.Stationary Schrodinger Equation -- 4.3.Expectation Value and Uncertainty Principle -- 5.Chemical Properties and Quantum Theory -- 5.1.Atomic Model -- 5.2.Molecular Orbital Theory -- 6.Crystal Symmetry and Bravais Lattice -- 6.1.Symmetry in Nature -- 6.2.Symmetry in Molecules -- 6.3.Symmetry in Crystals -- 6.4.Bloch Theorem and Band Structure -- pt. II Computational Methods -- 7.Introduction -- 8.Classical Simulation Methods -- 8.1.Molecular Mechanics -- 8.2.Simple Force-Field Approach -- 8.3.Reactive Force-Field Approach -- 9.Quantum Mechanical Simulation Methods -- 9.1.Born -- Oppenheimer Approximation and Pseudopotentials -- 9.2.Hartree -- Fock Method -- 9.3.Density Functional Theory -- 9.4.Meaning of the Single-Electron Energies within DFT and HF -- 9.5.Approximations for the Exchange -- Correlation Functional Exc -- 9.5.1.Local Density Approximation -- 9.5.2.Generalized Gradient Approximation -- 9.5.3.Hybrid Functionals -- 9.6.Wave Function Representations -- 9.6.1.Real-Space Representation -- 9.6.2.Plane Wave Representation -- 9.6.3.Local Basis Sets -- 9.6.4.Combined Basis Sets -- 9.7.Concepts Beyond HF and DFT -- 9.7.1.Quasiparticle Shift and the GW Approximation -- 9.7.2.Scissors Shift -- 9.7.3.Excitonic Effects -- 9.7.4.TDDFT -- 9.7.5.Post-Hartree -- Fock Methods -- 9.7.5.1.Configuration Interaction (CI) -- 9.7.5.2.Coupled Cluster (CC) -- 9.7.5.3.Møller -- Plesset Perturbation Theory (MPn) -- 10.Multiscale Approaches -- 10.1.Coarse-Grained Approaches -- 10.2.QM/MM Approaches -- 11.Chemical Reactions -- 11.1.Transition State Theory -- 11.2.Nudged Elastic Band Method -- pt. III Industrial Applications -- 12.Introduction -- 13.Microelectronic CMOS Technology -- 13.1.Introduction -- 13.2.Work Function Tunability in High-K Gate Stacks -- 13.2.1.Concrete Problem and Goal -- 13.2.2.Simulation Approach -- 13.2.3.Modeling of the Bulk Materials -- 13.2.4.Construction of the HKMG Stack Model -- 13.2.5.Calculation of the Band Alignment -- 13.2.6.Simulation Results and Practical Impact -- 13.3.Influence of Defect States in High-K Gate Stacks -- 13.3.1.Concrete Problem and Goal -- 13.3.2.Simulation Approach and Model System -- 13.3.3.Calculation of the Charge Transition Level -- 13.3.4.Simulation Results and Practical Impact -- 13.4.Ultra-Low-K Materials in the Back-End-of-Line -- 13.4.1.Concrete Problem and Goal -- 13.4.2.Simulation Approach -- 13.4.3.The Silylation Process: Preliminary Considerations -- 13.4.4.Simulation Results and Practical Impact -- 14.Modeling of Chemical Processes -- 14.1.Introduction -- 14.2.GaN Crystal Growth -- 14.2.1.Concrete Problem and Goal -- 14.2.2.Simulation Approach -- 14.2.3.ReaxFF Parameter Training Scheme -- 14.2.4.Set of Training Structures: ab initio Modeling -- 14.2.5.Model System for the Growth Simulations -- 14.2.6.Results and Practical Impact -- 14.3.Intercalation of Ions into Cathode Materials -- 14.3.1.Concrete Problem and Goal -- 14.3.2.Simulation Approach -- 14.3.3.Calculation of the Cell Voltage -- 14.3.4.Obtained Structural Properties of Lix V2 O5 -- 14.3.5.Results for the Cell Voltage -- 15.Properties of Nanostructured Materials -- 15.1.Introduction -- 15.2.Embedded PbTe Quantum Dots -- 15.2.1.Concrete Problem and Goal -- 15.2.2.Simulation Approach -- 15.2.3.Equilibrium Crystal Shape and Wulff Construction -- 15.2.4.Modeling of the Embedded PbTe Quantum Dots -- 15.2.5.Obtained Structural Properties -- 15.2.6.Internal Electric Fields and the Quantum Confined Stark Effect -- 15.3.Nanomagnetism -- 15.3.1.Concrete Problem and Goal -- 15.3.2.Construction of the Silicon Quantum Dots -- 15.3.3.Ab initio Simulation Approach -- 15.3.4.Calculation of the Formation Energy -- 15.3.5.Resulting Stability Properties -- 15.3.6.Obtained Magnetic Properties.
|
650 |
|
0 |
|a Materials science.
|
650 |
|
0 |
|a Materials
|x Design.
|
650 |
|
0 |
|a Materials
|x Simulation methods.
|
650 |
|
0 |
|a Materials
|x Models.
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING / Engineering (General)
|2 bisacsh
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING / Reference
|2 bisacsh
|
655 |
|
4 |
|a Electronic books.
|
700 |
1 |
|
|a Planitz, Philipp,
|e author.
|
700 |
1 |
|
|a Schreiber, Michael,
|d 1954-
|e author.
|
776 |
0 |
8 |
|i Erscheint auch als:
|a Leitsmann, Roman, 1979
|t In-vitro materials design
|
856 |
4 |
0 |
|u https://doi.org/10.1002/9783527667352
|z Full Text via HEAL-Link
|
994 |
|
|
|a 92
|b DG1
|