In-vitro materials design : modern atomistic simulation methods for engineers /
Κύριοι συγγραφείς: | , , |
---|---|
Μορφή: | Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Weinheim, Germany :
Wiley-VCH,
[2015]
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Machine generated contents note: pt. I Basic Physical and Mathematical Principles
- 1.Introduction
- 2.Newtonian Mechanics and Thermodynamics
- 2.1.Equation of Motion
- 2.2.Energy Conservation
- 2.3.Many Body Systems
- 2.4.Thermodynamics
- 3.Operators and Fourier Transformations
- 3.1.Complex Numbers
- 3.2.Operators
- 3.3.Fourier Transformation
- 4.Quantum Mechanical Concepts
- 4.1.Heuristic Derivation
- 4.2.Stationary Schrodinger Equation
- 4.3.Expectation Value and Uncertainty Principle
- 5.Chemical Properties and Quantum Theory
- 5.1.Atomic Model
- 5.2.Molecular Orbital Theory
- 6.Crystal Symmetry and Bravais Lattice
- 6.1.Symmetry in Nature
- 6.2.Symmetry in Molecules
- 6.3.Symmetry in Crystals
- 6.4.Bloch Theorem and Band Structure
- pt. II Computational Methods
- 7.Introduction
- 8.Classical Simulation Methods
- 8.1.Molecular Mechanics
- 8.2.Simple Force-Field Approach
- 8.3.Reactive Force-Field Approach
- 9.Quantum Mechanical Simulation Methods
- 9.1.Born
- Oppenheimer Approximation and Pseudopotentials
- 9.2.Hartree
- Fock Method
- 9.3.Density Functional Theory
- 9.4.Meaning of the Single-Electron Energies within DFT and HF
- 9.5.Approximations for the Exchange
- Correlation Functional Exc
- 9.5.1.Local Density Approximation
- 9.5.2.Generalized Gradient Approximation
- 9.5.3.Hybrid Functionals
- 9.6.Wave Function Representations
- 9.6.1.Real-Space Representation
- 9.6.2.Plane Wave Representation
- 9.6.3.Local Basis Sets
- 9.6.4.Combined Basis Sets
- 9.7.Concepts Beyond HF and DFT
- 9.7.1.Quasiparticle Shift and the GW Approximation
- 9.7.2.Scissors Shift
- 9.7.3.Excitonic Effects
- 9.7.4.TDDFT
- 9.7.5.Post-Hartree
- Fock Methods
- 9.7.5.1.Configuration Interaction (CI)
- 9.7.5.2.Coupled Cluster (CC)
- 9.7.5.3.Møller
- Plesset Perturbation Theory (MPn)
- 10.Multiscale Approaches
- 10.1.Coarse-Grained Approaches
- 10.2.QM/MM Approaches
- 11.Chemical Reactions
- 11.1.Transition State Theory
- 11.2.Nudged Elastic Band Method
- pt. III Industrial Applications
- 12.Introduction
- 13.Microelectronic CMOS Technology
- 13.1.Introduction
- 13.2.Work Function Tunability in High-K Gate Stacks
- 13.2.1.Concrete Problem and Goal
- 13.2.2.Simulation Approach
- 13.2.3.Modeling of the Bulk Materials
- 13.2.4.Construction of the HKMG Stack Model
- 13.2.5.Calculation of the Band Alignment
- 13.2.6.Simulation Results and Practical Impact
- 13.3.Influence of Defect States in High-K Gate Stacks
- 13.3.1.Concrete Problem and Goal
- 13.3.2.Simulation Approach and Model System
- 13.3.3.Calculation of the Charge Transition Level
- 13.3.4.Simulation Results and Practical Impact
- 13.4.Ultra-Low-K Materials in the Back-End-of-Line
- 13.4.1.Concrete Problem and Goal
- 13.4.2.Simulation Approach
- 13.4.3.The Silylation Process: Preliminary Considerations
- 13.4.4.Simulation Results and Practical Impact
- 14.Modeling of Chemical Processes
- 14.1.Introduction
- 14.2.GaN Crystal Growth
- 14.2.1.Concrete Problem and Goal
- 14.2.2.Simulation Approach
- 14.2.3.ReaxFF Parameter Training Scheme
- 14.2.4.Set of Training Structures: ab initio Modeling
- 14.2.5.Model System for the Growth Simulations
- 14.2.6.Results and Practical Impact
- 14.3.Intercalation of Ions into Cathode Materials
- 14.3.1.Concrete Problem and Goal
- 14.3.2.Simulation Approach
- 14.3.3.Calculation of the Cell Voltage
- 14.3.4.Obtained Structural Properties of Lix V2 O5
- 14.3.5.Results for the Cell Voltage
- 15.Properties of Nanostructured Materials
- 15.1.Introduction
- 15.2.Embedded PbTe Quantum Dots
- 15.2.1.Concrete Problem and Goal
- 15.2.2.Simulation Approach
- 15.2.3.Equilibrium Crystal Shape and Wulff Construction
- 15.2.4.Modeling of the Embedded PbTe Quantum Dots
- 15.2.5.Obtained Structural Properties
- 15.2.6.Internal Electric Fields and the Quantum Confined Stark Effect
- 15.3.Nanomagnetism
- 15.3.1.Concrete Problem and Goal
- 15.3.2.Construction of the Silicon Quantum Dots
- 15.3.3.Ab initio Simulation Approach
- 15.3.4.Calculation of the Formation Energy
- 15.3.5.Resulting Stability Properties
- 15.3.6.Obtained Magnetic Properties.