In-vitro materials design : modern atomistic simulation methods for engineers /

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Leitsmann, Roman (Συγγραφέας), Planitz, Philipp (Συγγραφέας), Schreiber, Michael, 1954- (Συγγραφέας)
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Weinheim, Germany : Wiley-VCH, [2015]
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Machine generated contents note: pt. I Basic Physical and Mathematical Principles
  • 1.Introduction
  • 2.Newtonian Mechanics and Thermodynamics
  • 2.1.Equation of Motion
  • 2.2.Energy Conservation
  • 2.3.Many Body Systems
  • 2.4.Thermodynamics
  • 3.Operators and Fourier Transformations
  • 3.1.Complex Numbers
  • 3.2.Operators
  • 3.3.Fourier Transformation
  • 4.Quantum Mechanical Concepts
  • 4.1.Heuristic Derivation
  • 4.2.Stationary Schrodinger Equation
  • 4.3.Expectation Value and Uncertainty Principle
  • 5.Chemical Properties and Quantum Theory
  • 5.1.Atomic Model
  • 5.2.Molecular Orbital Theory
  • 6.Crystal Symmetry and Bravais Lattice
  • 6.1.Symmetry in Nature
  • 6.2.Symmetry in Molecules
  • 6.3.Symmetry in Crystals
  • 6.4.Bloch Theorem and Band Structure
  • pt. II Computational Methods
  • 7.Introduction
  • 8.Classical Simulation Methods
  • 8.1.Molecular Mechanics
  • 8.2.Simple Force-Field Approach
  • 8.3.Reactive Force-Field Approach
  • 9.Quantum Mechanical Simulation Methods
  • 9.1.Born
  • Oppenheimer Approximation and Pseudopotentials
  • 9.2.Hartree
  • Fock Method
  • 9.3.Density Functional Theory
  • 9.4.Meaning of the Single-Electron Energies within DFT and HF
  • 9.5.Approximations for the Exchange
  • Correlation Functional Exc
  • 9.5.1.Local Density Approximation
  • 9.5.2.Generalized Gradient Approximation
  • 9.5.3.Hybrid Functionals
  • 9.6.Wave Function Representations
  • 9.6.1.Real-Space Representation
  • 9.6.2.Plane Wave Representation
  • 9.6.3.Local Basis Sets
  • 9.6.4.Combined Basis Sets
  • 9.7.Concepts Beyond HF and DFT
  • 9.7.1.Quasiparticle Shift and the GW Approximation
  • 9.7.2.Scissors Shift
  • 9.7.3.Excitonic Effects
  • 9.7.4.TDDFT
  • 9.7.5.Post-Hartree
  • Fock Methods
  • 9.7.5.1.Configuration Interaction (CI)
  • 9.7.5.2.Coupled Cluster (CC)
  • 9.7.5.3.Møller
  • Plesset Perturbation Theory (MPn)
  • 10.Multiscale Approaches
  • 10.1.Coarse-Grained Approaches
  • 10.2.QM/MM Approaches
  • 11.Chemical Reactions
  • 11.1.Transition State Theory
  • 11.2.Nudged Elastic Band Method
  • pt. III Industrial Applications
  • 12.Introduction
  • 13.Microelectronic CMOS Technology
  • 13.1.Introduction
  • 13.2.Work Function Tunability in High-K Gate Stacks
  • 13.2.1.Concrete Problem and Goal
  • 13.2.2.Simulation Approach
  • 13.2.3.Modeling of the Bulk Materials
  • 13.2.4.Construction of the HKMG Stack Model
  • 13.2.5.Calculation of the Band Alignment
  • 13.2.6.Simulation Results and Practical Impact
  • 13.3.Influence of Defect States in High-K Gate Stacks
  • 13.3.1.Concrete Problem and Goal
  • 13.3.2.Simulation Approach and Model System
  • 13.3.3.Calculation of the Charge Transition Level
  • 13.3.4.Simulation Results and Practical Impact
  • 13.4.Ultra-Low-K Materials in the Back-End-of-Line
  • 13.4.1.Concrete Problem and Goal
  • 13.4.2.Simulation Approach
  • 13.4.3.The Silylation Process: Preliminary Considerations
  • 13.4.4.Simulation Results and Practical Impact
  • 14.Modeling of Chemical Processes
  • 14.1.Introduction
  • 14.2.GaN Crystal Growth
  • 14.2.1.Concrete Problem and Goal
  • 14.2.2.Simulation Approach
  • 14.2.3.ReaxFF Parameter Training Scheme
  • 14.2.4.Set of Training Structures: ab initio Modeling
  • 14.2.5.Model System for the Growth Simulations
  • 14.2.6.Results and Practical Impact
  • 14.3.Intercalation of Ions into Cathode Materials
  • 14.3.1.Concrete Problem and Goal
  • 14.3.2.Simulation Approach
  • 14.3.3.Calculation of the Cell Voltage
  • 14.3.4.Obtained Structural Properties of Lix V2 O5
  • 14.3.5.Results for the Cell Voltage
  • 15.Properties of Nanostructured Materials
  • 15.1.Introduction
  • 15.2.Embedded PbTe Quantum Dots
  • 15.2.1.Concrete Problem and Goal
  • 15.2.2.Simulation Approach
  • 15.2.3.Equilibrium Crystal Shape and Wulff Construction
  • 15.2.4.Modeling of the Embedded PbTe Quantum Dots
  • 15.2.5.Obtained Structural Properties
  • 15.2.6.Internal Electric Fields and the Quantum Confined Stark Effect
  • 15.3.Nanomagnetism
  • 15.3.1.Concrete Problem and Goal
  • 15.3.2.Construction of the Silicon Quantum Dots
  • 15.3.3.Ab initio Simulation Approach
  • 15.3.4.Calculation of the Formation Energy
  • 15.3.5.Resulting Stability Properties
  • 15.3.6.Obtained Magnetic Properties.