Causality in a social world : moderation, meditation and spill-over /

Causality in a Social World introduces innovative new statistical research and strategies for investigating moderated intervention effects, mediated intervention effects, and spill-over effects using experimental or quasi-experimental data. The book uses potential outcomes to define causal effects,...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Hong, Guanglei (Συγγραφέας)
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: West Sussex : Wiley, 2015.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05236nam a2200541 4500
001 ocn911266364
003 OCoLC
005 20170527041951.4
006 m o d
007 cr cnu|||unuuu
008 150622s2015 enk ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d IDEBK  |d EBLCP  |d YDXCP  |d CDX  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d DG1  |d OCLCQ  |d DG1  |d YDX  |d IDB  |d LOA  |d UPM  |d DG1  |d GrThAP 
019 |a 913797436 
020 |a 9781119030645  |q electronic bk. 
020 |a 1119030641  |q electronic bk. 
020 |a 9781119030638  |q electronic bk. 
020 |a 1119030633  |q electronic bk. 
020 |z 9781118332566 
035 |a (OCoLC)911266364  |z (OCoLC)913797436 
050 4 |a BD541 
072 7 |a PHI  |x 004000  |2 bisacsh 
082 0 4 |a 122  |2 23 
049 |a MAIN 
100 1 |a Hong, Guanglei,  |e author. 
245 1 0 |a Causality in a social world :  |b moderation, meditation and spill-over /  |c Guanglei Hong. 
264 1 |a West Sussex :  |b Wiley,  |c 2015. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed June 23, 2015) 
504 |a Includes bibliographical references and index. 
505 0 |a Title Page; Copyright Page; Contents; Preface; Part I Overview; Chapter 1 Introduction; 1.1 Concepts of moderation, mediation, and spill-over; 1.1.1 Moderated treatment effects; 1.1.2 Mediated treatment effects; 1.1.3 Spill-over effects of a treatment; 1.2 Weighting methods for causal inference; 1.3 Objectives and organization of the book; 1.4 How is this book situated among other publications on related topics?; References; Chapter 2 Review of causal inference concepts and methods; 2.1 Causal inference theory; 2.1.1 Attributes versus causes 
505 8 |a 2.1.2 Potential outcomes and individual-specific causal effects2.1.3 Inference about population average causal effects; 2.1.3.1 Prima facie effect; 2.1.3.2 Ignorability assumption; 2.2 Applications to Lordś paradox and Simpsonś paradox; 2.2.1 Lordś paradox; 2.2.2 Simpsonś paradox; 2.3 Identification and estimation; 2.3.1 Selection bias; 2.3.2 Sampling bias; 2.3.3 Estimation efficiency; Appendix 2.1: Potential bias in a prima facie effect; Appendix 2.2: Application of the causal inference theory to Lord's paradox; References 
505 8 |a Chapter 3 Review of causal inference designs and analytic methods3.1 Experimental designs; 3.1.1 Completely randomized designs; 3.1.2 Randomized block designs; 3.1.3 Covariance adjustment for improving efficiency; 3.1.4 Multilevel experimental designs; 3.2 Quasiexperimental designs; 3.2.1 Nonequivalent comparison group designs; 3.2.2 Other quasiexperimental designs; 3.3 Statistical adjustment methods; 3.3.1 ANCOVA and multiple regression; 3.3.1.1 ANCOVA for removing selection bias; 3.3.1.2 Potential pitfalls of ANCOVA with a vast between-group difference 
505 8 |a 3.3.1.3 Bias due to model misspecification3.3.2 Matching and stratification; 3.3.3 Other statistical adjustment methods; 3.3.3.1 The IV method; 3.3.3.2 DID analysis; 3.4 Propensity score; 3.4.1 What is a propensity score?; 3.4.2 Balancing property of the propensity score; 3.4.3 Pooling conditional treatment effect estimate: Matching, stratification, and covariance adjustment; 3.4.3.1 Propensity score matching; 3.4.3.2 Propensity score stratification; 3.4.3.3 Covariance adjustment for the propensity score; 3.4.3.4 Sensitivity analysis 
505 8 |a Appendix 3.A: Potential bias due to the omission of treatment-by-covariate interactionAppendix 3.B: Variable selection for the propensity score model; References; Chapter 4 Adjustment for selection bias through weighting; 4.1 Weighted estimation of population parameters in survey sampling; 4.1.1 Simple random sample; 4.1.2 Proportionate sample; 4.1.3 Disproportionate sample; 4.2 Weighting adjustment for selection bias in causal inference; 4.2.1 Experimental result; 4.2.2 Quasiexperimental result; 4.2.3 Sample weight for bias removal; 4.2.4 IPTW for bias removal; 4.3 MMWS 
520 |a Causality in a Social World introduces innovative new statistical research and strategies for investigating moderated intervention effects, mediated intervention effects, and spill-over effects using experimental or quasi-experimental data. The book uses potential outcomes to define causal effects, explains and evaluates identification assumptions using application examples, and compares innovative statistical strategies with conventional analysis methods. Whilst highlighting the crucial role of good research design and the evaluation of assumptions required for identifying causal effects in. 
650 0 |a Causation  |x Social aspects. 
650 7 |a PHILOSOPHY / Epistemology  |2 bisacsh 
650 4 |a Mathematical statistics. 
650 4 |a Research -- Methodology. 
650 4 |a Statistics -- Methodology. 
650 4 |a Statistics. 
655 4 |a Electronic books. 
776 0 8 |i Print version:  |a Hong, Guanglei  |t Causality in a Social World : Moderation, Mediation and Spill-over  |d Hoboken : Wiley,c2015  |z 9781118332566 
856 4 0 |u https://doi.org/10.1002/9781119030638  |z Full Text via HEAL-Link 
994 |a 92  |b DG1