Advances in photovoltaics. part 4 /
Advances in Photovoltaics: Part Four provides valuable information on the challenges faced during the transformation of our energy supply system to more efficient, renewable energies. The volume discusses the topic from a global perspective, presenting the latest information on photovoltaics, a corn...
Άλλοι συγγραφείς: | , |
---|---|
Μορφή: | Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Amsterdam, Netherlands ; Boston, Mass. :
Elsevier/ Academic Press,
2015.
|
Έκδοση: | First edition. |
Σειρά: | Semiconductors and semimetals ;
v. 92. |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Front Cover; Advances in Photovoltaics: Part 4; Copyright; Contents; Contributors; Preface; Chapter One: Silicon Crystallization Technologies; 1. Silicon Feedstock; 1.1. Polysilicon: The Base Material for over 90% of All Solar Cells; 1.2. The Chemical Path; 1.3. Fluidized Bed Reactor; 1.4. The Metallurgical Path: UMG-Si; 1.5. Different Poly for Different Crystallization Techniques; 1.5.1. Mono Growth, Single Batch Mode; 1.5.2. Feeding and Multipulling; 1.5.3. Standard Multicrystalline Casting; 1.5.4. Float Zone; 2. Fundamental Parameters for Silicon Crystallization.
- 2.1. Material Properties, Material Utilization, and Chemical Reactivity2.2. Numerical Simulation; 3. Crystallization Technologies; 3.1. Pulling from the Melt: The Cz Technique; 3.1.1. Standard Cz Growth; 3.1.1.1. Process Sequence; 3.1.1.2. The Main Cost Drivers; 3.1.2. Actual Trends and Recent Developments; 3.1.2.1. Magnetic Cz; 3.1.2.2. Active Cooling; 3.1.2.3. Multipulling, Feeding, and Continuous Growth; 3.2. Directional Solidification: Growth of Multicrystalline Silicon; 3.2.1. Standard Growth Process; 3.2.1.1. The Hardware; 3.2.1.2. Growth Process; 3.2.1.3. Crucible Coating.
- 3.2.2. Actual Trends3.2.2.1. Scaling; 3.2.2.2. Mono-Like Growth; 3.2.2.3. High-Performance Multi; 3.3. FZ Growth; 3.3.1. State of the Art; 3.3.1.1. Diameter Limitations; 3.3.1.2. Feedstock; 4. Summary and Final Remarks; References; Chapter Two: Wafering of Silicon; 1. Introduction; 2. Multiwire Sawing Technology; 2.1. Slurry-Based Sawing; 2.2. Fixed Abrasive Sawing; 2.3. Experimental Sawing Results; 2.3.1. Slurry-Based Sawing; 2.3.1.1. Force in Ingot Feed Direction; 2.3.1.2. Friction Forces; 2.3.1.3. Dependence on Slurry Properties; 2.3.1.4. Wire Tension.
- 2.3.1.5. Wafer Thickness, Wire Diameter, and Particle Size Distribution2.3.1.6. Saw Marks; 2.3.2. Fixed Abrasive Sawing; 2.4. Determination of Wafer Properties; 2.4.1. Surface Properties; 2.4.1.1. Thickness, TTV, and Roughness; 2.4.1.2. Subsurface Damage; 2.4.2. Single Indentation Tests; 2.4.2.1. Loose Abrasive Sawing; 2.4.2.2. Fixed Abrasive Sawing; 2.4.3. Fracture Behavior; 2.5. Electronic Grade Silicon; 3. Basic Sawing Mechanisms; 3.1. Slurry-Based Sawing; 3.1.1. Material Removal Rate; 3.1.2. Elastohydrodynamic Behavior of Slurry and Wire; 3.1.3. Numerical Simulation of the Sawing Process.
- 3.2. Damage of the Wafer Surface3.2.1. Slurry Flow Instability and the Origin of Saw Marks; 3.2.2. Roughness and Subsurface Damage; 4. Alternative Wafering Technologies; 4.1. Cleavage Technologies; 4.2. Layer Transfer Technologies; References; Chapter Three: Reliability Issues of CIGS-Based Thin Film Solar Cells; 1. Reliability; 2. Metastabilities; 2.1. Conclusions on Metastabilities; 3. Partial Shading and Hotspots; 3.1. Conclusions on Partial Shading; 4. Potential-Induced Degradation; 4.1. Conclusions on PID; 5. Back Contact; Conclusions on Back Contact; References; Index.