Beam theory for subsea pipelines : analysis and practical applications /

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Papusha, Alexander N. (Συγγραφέας)
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Hoboken, New Jersey : Wiley, [2015]
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05114nam a2200613 4500
001 ocn915560761
003 OCoLC
005 20170124065940.2
006 m o d
007 cr cnu---unuuu
008 150804s2015 nju ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d DG1  |d IDEBK  |d YDXCP  |d RECBK  |d EBLCP  |d OCLCF  |d COO  |d OCLCQ  |d DEBBG  |d KSU  |d CCO  |d GrThAP 
019 |a 916922681 
020 |a 9781119117681  |q electronic bk. 
020 |a 1119117682  |q electronic bk. 
020 |a 9781119117674  |q electronic bk. 
020 |a 1119117674  |q electronic bk. 
020 |z 9781119117568 
020 |a 1119117569 
020 |a 9781119117568 
029 1 |a DEBBG  |b BV043397968 
035 |a (OCoLC)915560761  |z (OCoLC)916922681 
050 4 |a TC1800 
072 7 |a TEC  |x 009070  |2 bisacsh 
082 0 4 |a 621.8672  |2 23 
049 |a MAIN 
100 1 |a Papusha, Alexander N.,  |e author. 
245 1 0 |a Beam theory for subsea pipelines :  |b analysis and practical applications /  |c Alexander N. Papusha. 
264 1 |a Hoboken, New Jersey :  |b Wiley,  |c [2015] 
264 4 |c ©2015 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed August 5, 2015) 
504 |a Includes bibliographical references and index. 
505 0 |a Cover; Title Page; Copyright Page; Dedication; Contents; List of Figures; Abstract; Preface; List of Symbols; Acronyms; PART I CLASSICAL BEAM THEORY: PROBLEMSET AND TRADITIONAL METHOD OF SOLUTION; 1 Euler's beam approach: Linear theory of Beam Bending; 1.1 Objective to the part I; 1.2 Scope for part I; 1.3 Theory of Euler's beam: How to utilize general beam theory for solving the problems in question?; 1.3.1 Short history of beam theory; 1.3.2 General Euler -- Bernoulli method: Traditional approach; 1.3.3 Loading considerations (from Wikipedia). Symbolic solutions 
505 8 |a PART II STATICALLY INDETERMINATE BEAMS: CLASSICAL APPROACH2 Beam in classical evaluations; 2.1 Fixed both edges beam; 2.1.1 Problem set and traditional method of solution: Unknown reactions; 2.1.2 The equations of beam equilibrium; 2.1.3 Differential equation of beam bending; 2.1.4 The boundary conditions for a beam; 2.1.5 The solution for forces and moments; 2.1.6 Visualizations of solutions; 2.1.7 Well-known results from "black box" program; 2.2 Fixed beam with a leg in the middle part; 2.2.1 Problem set; 2.2.2 Static equations; 2.2.3 Differential equations for the deflections of the spans 
505 8 |a 2.2.4 Transmission and boundary conditions2.2.5 Reactions; 2.2.6 Visualizations of the symbolic solutions; PART III NEW METHOD OF SYMBOLIC EVALUATIONS IN THE BEAMTHEORY; 3 New method for solving beam static equations; 3.1 Objective; 3.2 Problem set; 3.3 Boundary conditions; 3.4 New practical application for Classical Beam Theory: Uniform load; 3.4.1 Elementary Problems: Rectangular Load Distributions. Hinge and roller supporters of beam; 3.5 Statically indeterminate beams; 3.5.1 Objective; 3.5.2 Problem b): Rectangular load distribution; 3.5.3 Problem c): Pointed force 
505 8 |a 3.5.4 Problem d): Moment at the point3.5.5 Problem set: Beam with hinge at the edge; 3.5.6 Problem set: Beam with weak stiffness at edge; 3.6 Statically indeterminate beams with a leg; 3.6.1 Problem bb): Two spans; 3.6.2 Exercises; 3.7 Cantilever Beam: Point Force at the Free Edge; 3.7.1 Simple cantilever beam; 3.7.2 Cantilever Beam: Point Force in the middle part of the beam; 3.8 Point Force in the middle part of the beam: Hinge and Roller; 3.8.1 Simple beam: Mechanical Problem Set; 3.8.2 Point Force in the middle part of the beam: Three-point bending; 3.8.3 Exercise 
505 8 |a 3.8.4 Moment at the edge of beam3.8.5 Fixed beam with the Hinge at the edge of the beam; 3.9 Multispan beam; 3.9.1 Symbolic evaluation for multispan beam; 3.9.2 Example of strength of multispan beam: Symbolic solutions; 3.9.3 Numerical solutions for a peak like force; 3.9.4 Numerical and symbolic solutions formultispan beam; 3.9.5 Fixed edges of multispan beam; PART IV BEAMS ON AN ELASTIC BED: APPLICATION OF THE NEWMETHOD; 4 Beam installed at the elastic foundation: Rectangular load. Symbolic Evaluations; 4.1 Beam at elastic bed: Problem set 
650 0 |a Underwater pipelines  |x Design and construction. 
650 0 |a Structural analysis (Engineering) 
650 7 |a TECHNOLOGY & ENGINEERING / Mechanical  |2 bisacsh 
650 4 |a Ocean engineering. 
650 4 |a Structural control (Engineering). 
650 4 |a Underwater pipelines. 
650 7 |a Structural analysis (Engineering)  |2 fast  |0 (OCoLC)fst01135602 
650 7 |a Underwater pipelines  |x Design and construction.  |2 fast  |0 (OCoLC)fst01161121 
655 4 |a Electronic books. 
655 0 |a Electronic books. 
776 0 8 |i Print version:  |a Papusha, Alexander N.  |t Beam Theory for Subsea Pipelines : Analysis and Practical Applications  |d Hoboken : Wiley,c2015  |z 9781119117568 
856 4 0 |u https://doi.org/10.1002/9781119117674  |z Full Text via HEAL-Link 
994 |a 92  |b DG1