Nanocarbons for advanced energy conversion. volume 2 /

In this second volume in the first book series on nanocarbons for advanced applications the highly renowned series and volume editor has put together a top author team of internationally acclaimed experts on carbon materials. Divided into three major parts, this reference provides a current overview...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Άλλοι συγγραφείς: Feng, Xinliang (Επιμελητής έκδοσης)
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Weinheim, Germany : Wiley-VCH, 2015.
Σειρά:Advanced nanocarbon materials.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • ""Cover
  • Title Page
  • Copyright
  • Contents
  • List of Contributors
  • Preface
  • Chapter 1 Heteroatom-Doped Carbon Nanotubes as Advanced Electrocatalysts for Oxygen Reduction Reaction
  • 1.1 Introduction
  • 1.2 Experimental Evaluation of Electrocatalytic Activity toward ORR
  • 1.3 Doped Carbon Nanotubes for ORR
  • 1.3.1 Carbon Nanotubes Doped with Nitrogen
  • 1.3.2 Carbon Nanotubes Doped with Heteroatoms Other Than Nitrogen
  • 1.4 Conclusions
  • Acknowledgments
  • References
  • Chapter 2 Doped Graphene as Electrocatalysts for Oxygen Reduction Reaction""
  • ""2.1 Introduction
  • 2.2 Active Sites and Mechanisms of ORR on Doped Graphene
  • 2.2.1 ORR Mechanism on Doped Graphene
  • 2.2.2 The Active Site of Doped Graphene for ORR
  • 2.3 Synthesis and Performance of Doped Graphene
  • 2.3.1 Nitrogen-Doped Graphene
  • 2.3.2 Synthesis and Performance of Other Heteroatom-Doped Graphene
  • 2.3.2.1 B-Doped Graphene
  • 2.3.2.2 S-Doped Graphene
  • 2.3.2.3 P and Other Heteroatom-Doped Graphene
  • 2.4 Conclusions and Perspective
  • References
  • Chapter 3 Heteroatom-Doped Nanoporous Carbon for Electrocatalysis
  • 3.1 Introduction""
  • ""3.2 Synthesis of Doped Nanoporous Carbons
  • 3.2.1 Synthesis of Heteroatom-Doped Ordered Mesoporous Carbons
  • 3.2.1.1 Self-Assembling of Heteroatom-Rich Carbon Precursors through a Soft-Templating Method
  • 3.2.1.2 Posttreatment of Ordered Mesoporous Carbon Framework with Heteroatom-Rich Chemicals
  • 3.2.1.3 Hard-Templating Method with One-Step Doping Using Heteroatom-Rich Carbon Precursors
  • 3.2.2 Synthesis of Doped Porous Graphene
  • 3.2.2.1 Vapor-Assisted Method
  • 3.2.2.2 Liquid-Phase Method
  • 3.3 Heteroatom-Doped Nanoporous Carbons for Electrocatalysis""
  • ""3.3.1 Oxygen Reduction Reaction (ORR)
  • 3.3.2 Doped Ordered Mesoporous Carbon for ORR
  • 3.3.3 Doped Graphene for ORR
  • 3.3.3.1 Single Heteroatom-Doped Graphene
  • 3.3.3.2 Dual-Doped Graphene
  • 3.3.3.3 Doped Graphene-Based Nanocomposites
  • 3.3.4 Other Electrochemical Systems
  • 3.4 Summary and Perspectives
  • References
  • Chapter 4 Nanocarbon-Based Nonprecious-Metal Electrocatalysts for Oxygen Reduction in Various Electrolytes
  • 4.1 Introduction
  • 4.2 Oxygen Reduction in Acidic Media
  • 4.2.1 Heat-Treated Macrocyclic Compounds""
  • ""4.2.2 Heat-Treated Nonmacrocyclic Catalysts
  • 4.2.2.1 Nitrogen Precursors
  • 4.2.2.2 Type of Transition Metals
  • 4.2.2.3 Effect of Supports
  • 4.2.2.4 Heating Temperatures
  • 4.2.3 Importance of in situ Formed Graphitic Nanocarbons
  • 4.3 Oxygen Reduction in Alkaline Media
  • 4.3.1 Metal-Free Carbon Catalysts
  • 4.3.1.1 Nitrogen-Doped Carbon
  • 4.3.1.2 Boron and Sulfur Doping
  • 4.3.1.3 Binary and Ternary Dopants
  • 4.3.2 Heat-Treated M-N-C (M: Fe, Co) Catalysts
  • 4.3.3 Nanocarbon/Transition Metal Compound Hybrids""