Predictive analytics : the power to predict who will click, buy, lie, or die /

"Predictive analytics unleashes the power of data. With this technology, computers literally learn from data how to predict future behaviors of individuals. In this updated and revised edition of Predictive Analytics, former Columbia University professor and Predictive Analytics World founder E...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Siegel, Eric, 1968-
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Hoboken : Wiley, 2016.
Έκδοση:Revised and Updated Edition.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05013nam a2200649 4500
001 ocn924684043
003 OCoLC
005 20170124071730.3
006 m o d
007 cr |||||||||||
008 151013s2016 nju o 001 0 eng
010 |a  2015039877 
040 |a DLC  |b eng  |e rda  |c DLC  |d N$T  |d IDEBK  |d YDXCP  |d TEFOD  |d DG1  |d UIU  |d COO  |d TAMCT  |d OCLCO  |d DEBBG  |d VT2  |d GrThAP 
019 |a 961851412  |a 962887120  |a 962888941  |a 962902637 
020 |a 9781119153658 (epub) 
020 |a 1119153654 (epub) 
020 |a 9781119145684 (pdf) 
020 |a 1119145686 (pdf) 
020 |z 9781119145677 (paperback) 
020 |a 9781119172536 
020 |a 1119172535 
020 |a 1119145678 (paperback) 
020 |a 9781119145677 (paperback) 
029 1 |a DEBBG  |b BV043738100 
035 |a (OCoLC)924684043  |z (OCoLC)961851412  |z (OCoLC)962887120  |z (OCoLC)962888941  |z (OCoLC)962902637 
037 |a C0E318E3-3943-49AE-9C59-22C347F03AD7  |b OverDrive, Inc.  |n http://www.overdrive.com 
042 |a pcc 
050 0 0 |a H61.4 
072 7 |a SOC  |x 000000  |2 bisacsh 
082 0 0 |a 303.49  |2 23 
084 |a BUS016000  |a BUS021000  |a BUS043000  |2 bisacsh 
049 |a MAIN 
100 1 |a Siegel, Eric,  |d 1968- 
245 1 0 |a Predictive analytics :  |b the power to predict who will click, buy, lie, or die /  |c Eric Siegel. 
250 |a Revised and Updated Edition. 
264 1 |a Hoboken :  |b Wiley,  |c 2016. 
300 |a 1 online resource. 
336 |a text  |2 rdacontent 
337 |a computer  |2 rdamedia 
338 |a online resource  |2 rdacarrier 
500 |a Revised edition of the author's Predictive analytics, 2013. 
500 |a Includes index. 
520 |a "Predictive analytics unleashes the power of data. With this technology, computers literally learn from data how to predict future behaviors of individuals. In this updated and revised edition of Predictive Analytics, former Columbia University professor and Predictive Analytics World founder Eric Siegel reveals the power and perils of prediction. New material includes: - The Real Reason the NSA Wants Your Data: Automatic Suspect Discovery. A special sidebar in Chapter 2, "With Power Comes Responsibility," presumes--with much evidence--that the National Security Agency considers PA a strategic priority. Can the organization use PA without endangering civil liberties? - Dozens of new examples from Facebook, Hopper, Shell, Uber, UPS, the U.S. government, and more. The Central Tables' compendium of mini-case studies has grown to 182 entries, including breaking examples. - A much needed warning regarding bad science. Chapter 3, "The Data Effect," includes an in-depth section about an all-too-common pitfall, and how we avoid it, i.e., how to successfully tap data's potential without being fooled by random noise, ensuring sound discoveries are made. - Even more extensive Notes, updated and expanded to 70+ pages, now moved to an online PDF. Now located at www.predictivenotes.com, the Notes include citations and comments that cover the above new content, as well as new citations for many other topics"--  |c Provided by publisher. 
588 |a Description based on print version record and CIP data provided by publisher. 
505 0 |a Foreword / Thomas H Davenport -- Preface to the Revised and Updated Edition: What's new and who's this book for-the predictive analytics FAQ -- Preface to the Original Edition: What is the occupational hazard of predictive analytics? -- Introduction: Prediction effect -- Liftoff! prediction takes action (deployment) -- With power comes responsibility: Hewlett-Packard, Target, the Cops, and the NSA deduce your secrets (ethics) -- Data effect: a glut at the end of the rainbow (data) -- Machine that learns: a look inside Chase's prediction of mortgage risk (modeling) -- Ensemble effect: Netflix, crowdsourcing, and supercharging prediction (ensembles) -- Watson and the jeopardy! challenge (question answering) -- Persuasion by the numbers: how Telenor, US Bank, and the Obama Campaign engineered influence (uplift) -- Afterword: Eleven predictions for the first hour of 2022 -- Appendices: -- A: Five effects of prediction -- B: Twenty applications of predictive analytics -- C: Prediction people: cast of "characters" -- Hands-On Guide: Resources for further leaning -- Acknowledgments -- About the author -- Index. 
650 0 |a Social sciences  |x Forecasting. 
650 0 |a Economic forecasting. 
650 0 |a Prediction (Psychology) 
650 0 |a Social prediction. 
650 0 |a Human behavior. 
650 7 |a BUSINESS & ECONOMICS / Consumer Behavior.  |2 bisacsh 
650 7 |a BUSINESS & ECONOMICS / Econometrics.  |2 bisacsh 
650 7 |a BUSINESS & ECONOMICS / Marketing / General.  |2 bisacsh 
655 4 |a Electronic books. 
776 0 8 |i Print version:  |a Siegel, Eric, 1968-  |t Predictive analytics  |b Revised and Updated Edition.  |d Hoboken : Wiley, 2016  |z 9781119145677  |w (DLC) 2015031895 
856 4 0 |u https://doi.org/10.1002/9781119172536  |z Full Text via HEAL-Link 
994 |a 92  |b DG1