|
|
|
|
LEADER |
05074nam a2200577 4500 |
001 |
ocn930703413 |
003 |
OCoLC |
005 |
20180501122028.0 |
006 |
m o d |
007 |
cr cnu|||unuuu |
008 |
151201s2015 maua ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d OPELS
|d N$T
|d OCLCO
|d IDEBK
|d YDXCP
|d OCLCF
|d OCLCO
|d CDX
|d EBLCP
|d OCLCO
|d OCLCQ
|d OCLCO
|d KNOVL
|d ZCU
|d COO
|d UAB
|d OCLCQ
|d OKS
|d MEU
|d GrThAP
|
019 |
|
|
|a 932334023
|a 951675501
|
020 |
|
|
|a 9780128030448
|q electronic bk.
|
020 |
|
|
|a 0128030445
|q electronic bk.
|
020 |
|
|
|a 0128030275
|
020 |
|
|
|a 9780128030271
|
035 |
|
|
|a (OCoLC)930703413
|z (OCoLC)932334023
|z (OCoLC)951675501
|
050 |
|
4 |
|a TK7874.85
|b .S46 2015eb
|
072 |
|
7 |
|a TEC
|x 009070
|2 bisacsh
|
082 |
0 |
4 |
|a 621.3815
|2 23
|
084 |
|
|
|a 33.60
|2 bcl
|
049 |
|
|
|a TEFA
|
245 |
0 |
0 |
|a Semiconductor Nanowires.
|n I,
|p Growth and Theory /
|c edited by Anna Fontcuberta I. Morral, Shadi A. Dayeh and Chennupati Jagadish.
|
246 |
3 |
0 |
|a Growth and Theory
|
264 |
|
1 |
|a Waltham, MA :
|b Academic Press is an imprint of Elsevier,
|c 2015.
|
300 |
|
|
|a 1 online resource (x, 314 pages :
|b illustrations).
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Semiconductors and semimetals ;
|v volume 93
|
546 |
|
|
|a Text in English.
|
588 |
0 |
|
|a Online resource; title from title details screen (ScienceDirect, viewed December 2, 2015).
|
505 |
0 |
|
|a Front Cover; Semiconductor Nanowires I: Growth and Theory; Copyright; Contents; Contributors; Preface; Chapter One: Theory of VLS Growth of Compound Semiconductors; 1. Introduction; 2. Fundamentals of VLS Growth; 3. Chemical Potentials for Au-Catalyzed VLS Growth of III-V Nanowires; 4. Growth Kinetics of III-V Nanowires; 5. Transport-Limited Growth of Nanowires; 6. Nucleation Rate in VLS Nanowires; 7. Position-Dependent Nucleation in Nanowires; 8. Self-consistent Growth Equation; 9. Ga-Catalyzed Growth of GaAs Nanowires; 10. Formation of Ternary Au-Catalyzed III-V Nanowires.
|
505 |
8 |
|
|a 11. Impact of Growth Conditions on the Crystal Structure of III-V NanowiresReferences; Chapter Two: Strain in Nanowires and Nanowire Heterostructures; 1. Introduction; 1.1. Scope; 1.2. Heterostructures, Mismatch, and Accommodation; 1.3. Nanowire Specificities; 2. Methods of Calculation and Measurement of Strain in Nanowires; 2.1. Calculation of Elastic Strain; 2.2. Experimental Assessment of Elastic Strain and Plastic Relaxation; 3. Axial Heterostructures; 3.1. Calculation of Elastic Relaxation in Axial Heterostructures.
|
505 |
8 |
|
|a 3.2. Critical Dimensions for the Plastic Relaxation of Axial Heterostructures3.2.1. Theory; 3.2.2. Experiments; 4. Nanowires on a Misfitting Substrate; 5. Core-Shell Heterostructures; 5.1. Elastic Relaxation in Core-Shell Heterostructures: Theoretical Considerations; 5.2. Plastic Relaxation and Critical Dimensions in Core-Shell Heterostructures; 5.2.1. Theoretical Considerations; 5.2.2. Calculations; 5.2.3. Which Dislocations May Actually Form?; 5.2.4. Results; 5.2.5. Experiments; 6. Other Possible Instances of Strain Relaxation in NWs.
|
505 |
8 |
|
|a 6.1. Augmented Strain Relaxation via Morphological Changes6.2. Stacking Faults, Twins, and Polytypism; 6.3. Sidewall-Induced and Edge-Induced Strains; 7. Summary and Conclusions; References; Chapter Three: van der Waals Heteroepitaxy of Semiconductor Nanowires; 1. Introduction; 1.1. Heteroepitaxy of Semiconductors on Atomic-Layered Materials (ALMs); 1.2. van der Waals Epitaxy (Versus Covalent Epitaxy); 2. van der Waals (vdW) Heteroepitaxy of Semiconductor Nanowires; 2.1. Vertically Aligned Nanowires on 2d-ALMs; 2.2. Nanowire Heterostructure.
|
505 |
8 |
|
|a 2.3. vdW Epitaxial Nanowires on a Monoatomic Layer Substrate2.4. vdW Epitaxial Double Heterostructure: InAs/Graphene/InAs; 3. vdW Heteroepitaxial Relationship and Heterointerface of Nanowire/2d-ALM; 3.1. Nearly Commensurate System: InAs/Graphene; 3.2. Highly Incommensurate System: ZnO/hBN and ZnO/Mica; 4. Controlled vdW Epitaxy of Semiconductor Nanowires; 4.1. Nucleation and Growth on 2d-ALM with Surface Imperfections; 4.2. Position- and Shape-Controlled vdW Epitaxy; 5. Optoelectronic Device Applications; 6. Conclusions and Perspectives; Acknowledgment; References.
|
504 |
|
|
|a Includes bibliographical references and index.
|
650 |
|
0 |
|a Nanowires.
|
650 |
|
0 |
|a Semiconductors
|x Materials.
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Mechanical.
|2 bisacsh
|
650 |
|
7 |
|a Nanowires.
|2 fast
|0 (OCoLC)fst01032641
|
650 |
|
7 |
|a Semiconductors
|x Materials.
|2 fast
|0 (OCoLC)fst01112237
|
655 |
|
4 |
|a Electronic books.
|
700 |
1 |
|
|a Fontcuberta i Morral, Anna,
|e editor.
|
700 |
1 |
|
|a Dayeg, Shadi A.,
|e editor.
|
700 |
1 |
|
|a Jagadish, C.
|q (Chennupati),
|e editor.
|
776 |
0 |
8 |
|i Print version:
|a Fontcuberta i Morral, Anna.
|t Semiconductor Nanowires I: Growth and Theory.
|d : Elsevier Science, ©2015
|
830 |
|
0 |
|a Semiconductors and semimetals ;
|v v. 93.
|
856 |
4 |
0 |
|u https://www.sciencedirect.com/science/bookseries/00808784/93
|z Full Text via HEAL-Link
|