Advances in Biomembranes and Lipid Self-Assembly. Volume 27 /

Λεπτομέρειες βιβλιογραφικής εγγραφής
Άλλοι συγγραφείς: Iglič, Aleš (Επιμελητής έκδοσης), Rappolt, Michael (Επιμελητής έκδοσης), Garcia-Saez, Ana (Επιμελητής έκδοσης)
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: San Diego : Elsevier Science, 2018.
Σειρά:Advances in Biomembranes and Lipid Self-Assembly ; Volume 27
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05309nam a2200565 4500
001 on1027173280
003 OCoLC
005 20200326101151.0
006 m o d
007 cr cnu---unuuu
008 180303s2018 cau o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d N$T  |d OPELS  |d NLE  |d GZM  |d OCLCF  |d YDX  |d OCLCQ  |d UPM  |d D6H  |d MYG  |d OCLCQ  |d UKMGB  |d OCLCQ  |d GrThAP 
015 |a GBB837530  |2 bnb 
016 7 |a 018757379  |2 Uk 
019 |a 1027143021  |a 1027612475  |a 1027715782 
020 |a 9780128157732  |q (electronic bk.) 
020 |a 0128157739  |q (electronic bk.) 
020 |a 9780128157725 
035 |a (OCoLC)1027173280  |z (OCoLC)1027143021  |z (OCoLC)1027612475  |z (OCoLC)1027715782 
050 4 |a TP248.25.B53 
072 7 |a SCI  |x 013060  |2 bisacsh 
072 7 |a TEC  |x 009010  |2 bisacsh 
082 0 4 |a 660  |2 23 
245 0 0 |a Advances in Biomembranes and Lipid Self-Assembly.  |n Volume 27 /  |c edited by Aleš Iglič, Michael Rappolt, Ana J. García-Sáez. 
264 1 |a San Diego :  |b Elsevier Science,  |c 2018. 
300 |a 1 online resource (264 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Advances in Biomembranes and Lipid Self-Assembly ;  |v Volume 27 
588 0 |a Print version record. 
505 0 |a Front Cover; Advances in Biomembranes and Lipid Self-Assembly; Copyright; Contents; Contributors; Preface; Chapter One: The Role of Self-Assembling Lipid Molecules in Vaccination; 1. Introduction; 2. Immune Response to Lipids; 2.1. Innate Immune Response to Lipids; 2.2. Lipid-Stimulated PRRs (TLR4); 2.3. TLR4 Signaling; 3. Lipids, Lipid Derivatives, and Lipid Mimetics as Vaccine Adjuvants; 3.1. TLR4-Directed Vaccine Adjuvants Beyond Lipid A; 3.2. Lipid A Derivatives as Vaccine Adjuvants; 3.3. Small Molecule TLR4 Adjuvants; 3.4. Challenges With Animal Models for TLR4 Adjuvant Development. 
505 8 |a 4. Lipid-Based Self-Assembling Vesicle as Vaccine Platforms4.1. Lipid-Based Nanovesicles as Vaccine Platforms; 4.2. Liposomes as Vaccine Platforms; 4.3. Liposome Antigens and Adjuvants; 4.4. VLPs-Based Vaccines; 4.4.1. Icosahedral and Spherical VLPs; 4.4.2. Filamentous VLPs; 4.5. Utilizing VLPs in the Context of a Highly Pathogenic Virus Research; 4.5.1. Entry; 4.5.2. Budding; References; Further Reading; Chapter Two: The Role of Mitochondrial Outer Membrane Permeabilization (MOMP) in Apoptosis: Studying Bax Pores by Cryo-El ... ; 1. Introduction; 2. In Vitro Reconstitution of MOMP (Fig. 1). 
505 8 |a 2.1. Outer Membrane Vesicles2.2. Liposomes; 3. Bax Pores Revealed in Liposomes and OMVs by Cryo-Electron Microscopy; 3.1. Freezing Optimization; 3.2. Bax Pores in Liposomes; 3.3. Bax Pores in OMVs; 4. Bax Localization in the Pore; 4.1. Direct and Indirect Labeling of Bax With Nanogold; 4.1.1. Direct Labeling of Bax; 4.1.2. Indirect Labeling of Bax; 4.2. Bax Localization on the Pore Edges; 4.3. Bax Pores in Apoptotic Mitochondria; 5. Possible Pore Formation Mechanisms; 5.1. Bax/Bak Dimer/Oligomer Formation During MOMP; 5.2. Role for a Single Bax Molecule in Pore Formation? 
505 8 |a 5.3. Membrane Permeabilization Induced by Antimicrobial Peptides6. Summary and Future Directions; Acknowledgments; References; Chapter Three: Electrochemical Biosensor Based on TiO2 Nanomaterials for Cancer Diagnostics; 1. Introduction; 2. Cancer; 2.1. Pathology; 2.2. Cancer Diagnostic: Current Issues; 3. Toward Novel Methods of Cancer Diagnosis; 3.1. Biosensor; 3.1.1. Molecular Recognition Element in Biosensor; 3.1.2. Transducers in Biosensor; 3.2. Electrochemical Biosensor and Electrochemical Detection Techniques; 3.2.1. Voltammetric/Amperometric Biosensors; 3.2.2. Impedimetric Biosensors. 
505 8 |a 3.2.3. Conductometric and Capacitive Biosensors3.2.4. Potentiometric Biosensors; 3.2.5. Field Effect Transistor (FET)-Based Biosensors; 4. Nanosized Materials; 4.1. TiO2 Nanomaterials in Biomedicine; 4.2. Important Characteristics of TiO2 Nanomaterials for Biosensor Applications; 4.2.1. Specific Surface Area; 4.2.2. Wettability; 4.3. Interactions TiO2 Nanomaterials: Biological Material; 4.3.1. Effect of Gaseous Plasma Surface Treatment; 4.3.2. Effect of Electron Transfer Rate; 5. TiO2 Biosensors; 5.1. TiO2 Biosensors for Human Cancer Detection; 6. Conclusions; References; Further Reading. 
500 |a Chapter Four: How Can Artificial Lipid Models Mimic the Complexity of Molecule-Membrane Interactions? 
650 0 |a Bilayer lipid membranes  |x Biotechnology  |v Periodicals. 
650 0 |a Liposomes  |v Periodicals. 
650 7 |a SCIENCE  |x Chemistry  |x Industrial & Technical.  |2 bisacsh 
650 7 |a TECHNOLOGY & ENGINEERING  |x Chemical & Biochemical.  |2 bisacsh 
650 7 |a Bilayer lipid membranes  |x Biotechnology.  |2 fast  |0 (OCoLC)fst00831684 
650 7 |a Liposomes.  |2 fast  |0 (OCoLC)fst00999411 
655 4 |a Electronic books. 
655 7 |a Periodicals.  |2 fast  |0 (OCoLC)fst01411641 
700 1 |a Iglič, Aleš,  |e editor. 
700 1 |a Rappolt, Michael,  |e editor. 
700 1 |a Garcia-Saez, Ana,  |e editor. 
776 0 8 |i Print version:  |a Iglic, Ales.  |t Advances in Biomembranes and Lipid Self-Assembly.  |d San Diego : Elsevier Science, ©2018  |z 9780128157725 
856 4 0 |3 ScienceDirect  |u https://www.sciencedirect.com/science/bookseries/24519634/27  |z Full Text via HEAL-Link