|
|
|
|
LEADER |
04866nam a2200505 4500 |
001 |
on1039718519 |
003 |
OCoLC |
005 |
20200326101153.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
180611s2018 mau o 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d OPELS
|d N$T
|d YDX
|d EBLCP
|d STF
|d OCLCF
|d UPM
|d NLE
|d D6H
|d OCLCQ
|d GrThAP
|
019 |
|
|
|a 1039938708
|
020 |
|
|
|a 9780128151402
|q (electronic bk.)
|
020 |
|
|
|a 0128151404
|q (electronic bk.)
|
020 |
|
|
|a 9780128151396
|q (print)
|
020 |
|
|
|a 0128151390
|
035 |
|
|
|a (OCoLC)1039718519
|z (OCoLC)1039938708
|
050 |
|
4 |
|a TK7874.85
|
072 |
|
7 |
|a TEC
|x 009070
|2 bisacsh
|
082 |
0 |
4 |
|a 621.3815
|2 23
|
245 |
0 |
0 |
|a Nanowires for energy applications /
|c edited by Sudha Mokkapati, Chennupati Jagadish.
|
264 |
|
1 |
|a Cambridge, MA :
|b Academic Press,
|c 2018.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Semiconductors and semimetals ;
|v volume 98
|
500 |
|
|
|a Includes index.
|
588 |
0 |
|
|a Online resource; title from PDF title page (ScienceDirect, viewed June 12, 2018).
|
505 |
0 |
|
|a Front Cover; Nanowires for Energy Applications; Copyright; Contents; Contributors; Preface; Chapter One: Inorganic Nanofibers by Electrospinning Techniques and Their Application in Energy Conversion and Storage Sy ... ; 1. Introduction; 2. Electrospun Carbon Nanofibers and Their Application in Energy Storage Systems; 2.1. Working Mechanism of Lithium-Ion Batteries and Supercapacitors; 2.2. One-Dimensional Nanoscaled Carbon Materials; 2.3. Improvements in the Architectural Design of CNFs; 2.3.1. Single-, Multiwalled and Porous Carbon Nanofibers; 2.3.2. Heteroatom-Doped CNFs
|
505 |
8 |
|
|a 2.3.3. Flexible Electrode Design2.4. Challenges and Perspectives; 3. Metallic Nanofibers; 3.1. Synthesis Routes Toward Metallic Nanofibers; 3.2. Metallic Nanofibers as Transparent Conductive Electrodes; 3.3. Metal Nanowires for Magnetic Applications; 3.4. Catalytically Active Metal Nanofibers; 4. Electrospun Inorganic Oxide Nanofibers for Energy Applications; 4.1. Binary Metal Oxide Nanofibers; 4.1.1. TiO2 Nanofibers; 4.1.2. Fe2O3 and WO3 Nanofibers; 4.2. Ternary Oxide Nanofibers; 4.2.1. Perovskite Oxides and Other Complex Structures; 4.3. Challenges and Perspectives
|
505 |
8 |
|
|a 5. Nanofiber Architecture: From Core-Shell Fibers to Yarns5.1. Core-Shell and Hollow Structures; 5.2. Janus-Type Structures; 5.3. Nanofiber Yarns; 6. Summary and Outlook; Acknowledgments; References; Chapter Two: Top-Down Etching of Si Nanowires; 1. Introduction; 2. Nanowires by Dry Etching; 2.1. Introduction to Dry Etching; 2.2. Plasma Etching Process; 2.3. RIE Process; 2.4. RIE Etching Chemistry; 2.5. RIE Etching Processes for Si Nanowire Etching; 2.5.1. Near Room Temperature RIE; 2.5.1.1. Effect of Gas Mixture; 2.5.1.2. Effect of Pressure; 2.5.1.3. Effect of Plasma Energy and Direction
|
505 |
8 |
|
|a 2.5.1.4. Optimization With Linearly Graded Gas Flow2.5.2. Cryogenic RIE for Si Nanowire Etching; 2.5.3. Time-Multiplexed RIE for Si Nanowires; 3. Nanowires by MacEtch; 3.1. Etching Mechanism and Chemical Reactions; 3.2. Effect of Metal Catalyst; 3.3. Mass Transfer of Chemical Reactants; 3.4. Effect of Substrate Properties; 3.5. Effect of Etchant Concentration; 3.6. Fabrication of Vertically Aligned and Periodic Nanowires; 3.7. New Techniques for Controlling the Morphology of Nanowires; 4. Summary; Acknowledgments; References; Chapter Three: Group IV Nanowires for Carbon-Free Energy Conversion
|
505 |
8 |
|
|a 1. Introduction2. Phonon-Engineered Group IV Nanowire and Nanowire-Based Thermoelectrics; 2.1. Basic Concepts of Thermoelectricity; 2.2. Choice of Thermoelectric Materials; 2.3. Generalized Transport Model for Thermoelectric Materials; 2.4. Phonon Engineering and Thermal Conductivity of Silicon-Based Nanowires; 2.5. ZT Investigations in Semiconductor Nanowires; 2.5.1. Group IV Nanowires (Elemental and Alloys); 2.5.2. III-V Nanowires; 2.5.3. Thermoelectric Properties of Other Nanowires; 3. Sn-Containing Group IV Nanowires and Their Potential Applications in Photovoltaics
|
650 |
|
0 |
|a Nanowires.
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Mechanical.
|2 bisacsh
|
650 |
|
7 |
|a Nanowires.
|2 fast
|0 (OCoLC)fst01032641
|
655 |
|
4 |
|a Electronic books.
|
700 |
1 |
|
|a Mokkapati, Sudha,
|e editor.
|
700 |
1 |
|
|a Jagadish, C.
|q (Chennupati),
|e editor.
|
776 |
0 |
8 |
|i Print version:
|t Nanowires for energy applications.
|d Cambridge, MA : Academic Press, 2018
|z 0128151390
|z 9780128151396
|w (OCoLC)1012567438
|
830 |
|
0 |
|a Semiconductors and semimetals ;
|v v. 98.
|
856 |
4 |
0 |
|3 ScienceDirect
|u https://www.sciencedirect.com/science/bookseries/00808784/98
|z Full Text via HEAL-Link
|
856 |
4 |
0 |
|3 ScienceDirect
|u https://www.sciencedirect.com/science/book/9780128151396
|z Full Text via HEAL-Link
|