Biological NMR. Part B /

Λεπτομέρειες βιβλιογραφικής εγγραφής
Άλλοι συγγραφείς: Wand, A. Joshua (Επιμελητής έκδοσης)
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cambridge, MA : Academic Press, 2019.
Σειρά:Methods in enzymology ; v. 615.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Front Cover; Biological NMR Part B; Copyright; Contents; Contributors; Preface; Chapter One: Companion Simulations and Modeling to NMR-Based Dynamical Studies of Proteins; 1. Introduction; 2. The Generalized NMR Order Parameter; 2.1. Definition; 2.2. Simulation of Order Parameters; 2.3. Interpretation of Experimental and Simulated Order Parameters: The Role of Simple Models; 2.4. Molecular Dynamics Simulation of Methyl Order Parameters; 2.5. Simulation of Aromatic Group Order Parameters; 3. Conformational Entropy and Protein Dynamics; 3.1. Definition and Properties of Entropy
  • 3.2. Extraction of Conformational Entropy of Proteins4. J-couplings; 5. Residual Dipolar Couplings; 6. Protein Compressibility; 7. Molecular Tumbling; 8. Water Dynamics; Acknowledgment; References; Chapter Two: Reverse Micelle Encapsulation of Proteins for NMR Spectroscopy; 1. Introduction; 2. Sample Composition Considerations; 2.1. Aqueous Phase: Protein and Buffer; 2.2. Surfactants; 2.3. Bulk Alkane; 3. Spectroscopic Considerations; 4. Method for Screening RM Conditions; 4.1. Preparing 10MAG/LDAO Samples; 4.1.1. Adjusting the pH of LDAO; 4.1.2. Completing 10MAG/LDAO Samples
  • 4.2. Preparing CTAB/Hexanol Samples4.3. Preparing AOT Samples; 5. Method for Preparation of RM Solutions in Propane or Ethane; 5.1. Safety Considerations; 5.2. Preparing Sample Components; 5.3. Procedure for Elevated-Pressure RM Encapsulation; 6. Benchmarking Encapsulation; 7. Conclusions and Outlook; Acknowledgments; References; Chapter Three: Characterizing Protein Hydration Dynamics Using Solution NMR Spectroscopy; 1. Introduction; 2. Theoretical and Practical Considerations; 2.1. Foundation Theory; 2.2. Overcoming Artifacts and Limitations
  • 3. Preparation of Protein Encapsulated RM Samples3.1. Protein Labeling and Purification; 3.2. RM Encapsulation and Considerations; 4. NMR Spectroscopy and Experimental Setup; 4.1. NOESY and ROESY Experiments; 4.2. Two-Dimensional vs Three-Dimensional Experiments; 4.3. Nonuniform Sampling; 4.4. Identification of Hydrogen Exchange; 4.5. Quantification of Hydrogen Exchange-Relayed Magnetization; 5. Data Collection and Analysis; 5.1. Data Collection; 5.2. General Fitting Strategy; 5.3. Simplified Analysis in the Absence of Hydrogen Exchange; 6. Conclusions; Acknowledgments; References
  • Chapter Four: Understanding Protein Function Through an Ensemble Description: Characterization of Functional States by F NMR1. 19F-Reporters That Can Be Biosynthetically Incorporated Into Proteins; 2. Approaches to Chemical Tagging of Proteins by 19F Reporters; 3. Improving Delineation of States by 19F NMR; 4. Distinguishing States by Topology Measurements That Focus on Solvent Exposure and Hydrophobicity; 5. Relaxation Experiments and Simple Approaches to Delineating States in Fast and Slow Exchange; 6. Extending Resolution of States by 19F NMR; 6.1. Pseudocontact Shift Reagents