Computational chemistry /
'Computational Chemistry, ' Volume 73 in the Advances in Inorganic Chemistry series, presents timely and informative summaries on current progress in a variety of subject areas. This acclaimed serial features reviews written by experts in the field, serving as an indispensable reference to...
Κύριοι συγγραφείς: | , |
---|---|
Μορφή: | Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cambridge, MA :
Academic Press, an imprint of Elsevier,
[2019]
|
Έκδοση: | First edition. |
Σειρά: | Advances in inorganic chemistry ;
v. 73. |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Front Cover; Computational Chemistry; Copyright; Contents; Contributors; Preface; Feature Article; Chapter One: Metal-metal interactions in binuclear cyclopentadienylmetal carbonyls: Extending insight from experimental w ... ; 1. Introduction; 2. Theoretical methods; 3. Binuclear cyclopentadienylmetal carbonyls of d-block metals; 4. Binuclear cyclopentadienylmetal carbonyls of the f-block metals; 5. Summary and outlook; Acknowledgment; References; Chapter Two: Novel aspects of element-element bonds in main group chemistry; 1. Introduction; 1.1. Dative and electron-sharing bonds
- 1.2. Donor-acceptor complexes of main group compounds2. Beryllium complexes; 3. Group 14 compounds; 3.1. Complexes C2L2 (L=NHC, cAAC); 3.2. Complexes (E)L2 (E=C-Sn); 3.3. Complexes (SiC)L2 (L=NHC, PMe3); 3.4. Complexes E2H2L2 (E=C, Si); 4. Group 15 compounds; 5. Summary; References; Chapter Three: The beryllium bond; 1. Introduction; 1.1. The beryllium atom; 1.2. The Be2 molecule (beryllium dimer); 1.3. The Be3 molecule (beryllium trimer); 1.4. Beryllium clusters (Ben, n3); 1.5. Other BeBe bonds; 2. Organoberyllium compounds; 3. The beryllium bond; 3.1. Definition; 3.2. Binary complexes
- 3.3. BeBond characteristics3.4. BeBond effect on acidity/basicity; 3.5. BeBond effect on reactivity; 3.6. Cooperativity in BeBond complexes; 4. Conclusions and outlook; Acknowledgments; References; Chapter Four: Cation affinities throughout the periodic table; 1. Introduction; 2. Energy decomposition analyses (EDA); 3. Proton affinities of maingroup-element hydrides; 3.1. Benchmarking and validation of DFT; 3.2. Proton affinities of anionic maingroup-element hydrides in the gas phase and in water; 3.3. Proton affinities of neutral maingroup-element hydrides in the gas phase and in water
- 3.4. Methyl-substituent effects on proton affinities4. Alkyl cation affinities of maingroup-element hydrides; 4.1. ACA trends across the periodic table in the gas phase; 4.2. Variation of the alkyl cations; 4.3. Methyl-substituent effects on tert-butyl cation affinities; 4.4. Effect of dispersion corrections; 5. Alkali metal cation affinities of anionic maingroup-element hydrides; 5.1. AMCA trends across the periodic table in the gas phase; 5.2. Comparison of proton, alkyl and alkali metal cations; 6. Conclusions and outlook; Acknowledgments; References
- Chapter Five: Stacking interaction potential energy surfaces of square-planar metal complexes containing chelate rings1. Introduction; 2. Quantum chemical calculations; 3. Interaction energy calculations of stacking between benzene and metal chelate rings; 3.1. Interaction energy calculations of stacking between benzene and acac type metal chelate rings; 3.2. Interaction energy calculations of stacking between benzene and nickel bis(dithiolene) chelate rings; 4. Stacking interactions between two chelate rings; 4.1. Stacking interactions between two acac type metal chelate rings