Markov Decision Processes With Their Applications
Markov decision processes (MDPs), also called stochastic dynamic programming, were first studied in the 1960s. MDPs can be used to model and solve dynamic decision-making problems that are multi-period and occur in stochastic circumstances. There are three basic branches in MDPs: discrete-time MDPs,...
Κύριοι συγγραφείς: | , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Boston, MA :
Springer US,
2008.
|
Σειρά: | Advances in Mechanics and Mathematics ;
14 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Discretetimemarkovdecisionprocesses: Total Reward
- Discretetimemarkovdecisionprocesses: Average Criterion
- Continuous Time Markov Decision Processes
- Semi-Markov Decision Processes
- Markovdecisionprocessesinsemi-Markov Environments
- Optimal control of discrete event systems: I
- Optimal control of discrete event systems: II
- Optimal replacement under stochastic Environments
- Optimalal location in sequential online Auctions.