Statistical Learning from a Regression Perspective

Statistical Learning from a Regression Perspective considers statistical learning applications when interest centers on the conditional distribution of the response variable, given a set of predictors, and when it is important to characterize how the predictors are related to the response. As a firs...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Berk, Richard A. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2008.
Σειρά:Springer Series in Statistics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04367nam a22005775i 4500
001 978-0-387-77501-2
003 DE-He213
005 20151204171434.0
007 cr nn 008mamaa
008 100301s2008 xxu| s |||| 0|eng d
020 |a 9780387775012  |9 978-0-387-77501-2 
024 7 |a 10.1007/978-0-387-77501-2  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Berk, Richard A.  |e author. 
245 1 0 |a Statistical Learning from a Regression Perspective  |h [electronic resource] /  |c by Richard A. Berk. 
264 1 |a New York, NY :  |b Springer New York,  |c 2008. 
300 |a XVII, 360 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Statistics,  |x 0172-7397 
505 0 |a Statistical Learning as a Regression Problem -- Regression Splines and Regression Smoothers -- Classification and Regression Trees (CART) -- Bagging -- Random Forests -- Boosting -- Support Vector Machines -- Broader Implications and a Bit of Craft Lore. 
520 |a Statistical Learning from a Regression Perspective considers statistical learning applications when interest centers on the conditional distribution of the response variable, given a set of predictors, and when it is important to characterize how the predictors are related to the response. As a first approximation, this is can be seen as an extension of nonparametric regression. Among the statistical learning procedures examined are bagging, random forests, boosting, and support vector machines. Response variables may be quantitative or categorical. Real applications are emphasized, especially those with practical implications. One important theme is the need to explicitly take into account asymmetric costs in the fitting process. For example, in some situations false positives may be far less costly than false negatives. Another important theme is to not automatically cede modeling decisions to a fitting algorithm. In many settings, subject-matter knowledge should trump formal fitting criteria. Yet another important theme is to appreciate the limitation of one’s data and not apply statistical learning procedures that require more than the data can provide. The material is written for graduate students in the social and life sciences and for researchers who want to apply statistical learning procedures to scientific and policy problems. Intuitive explanations and visual representations are prominent. All of the analyses included are done in R. Richard Berk is Distinguished Professor of Statistics Emeritus from the Department of Statistics at UCLA and currently a Professor at the University of Pennsylvania in the Department of Statistics and in the Department of Criminology. He is an elected fellow of the American Statistical Association and the American Association for the Advancement of Science and has served in a professional capacity with a number of organizations such as the Committee on Applied and Theoretical Statistics for the National Research Council and the Board of Directors of the Social Science Research Council. His research has ranged across a variety of applications in the social and natural sciences. 
650 0 |a Mathematics. 
650 0 |a Public health. 
650 0 |a Probabilities. 
650 0 |a Statistics. 
650 0 |a Social sciences. 
650 0 |a Psychology  |x Methodology. 
650 0 |a Psychological measurement. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Statistics for Social Science, Behavorial Science, Education, Public Policy, and Law. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Public Health. 
650 2 4 |a Psychological Methods/Evaluation. 
650 2 4 |a Methodology of the Social Sciences. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387775005 
830 0 |a Springer Series in Statistics,  |x 0172-7397 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-77501-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)