Plane Answers to Complex Questions The Theory of Linear Models /

This textbook provides a wide-ranging introduction to the use and theory of linear models for analyzing data. The author's emphasis is on providing a unified treatment of linear models, including analysis of variance models and regression models, based on projections, orthogonality, and other v...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Christensen, Ronald (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2011.
Έκδοση:4.
Σειρά:Springer Texts in Statistics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03095nam a22004335i 4500
001 978-1-4419-9816-3
003 DE-He213
005 20151204175310.0
007 cr nn 008mamaa
008 110517s2011 xxu| s |||| 0|eng d
020 |a 9781441998163  |9 978-1-4419-9816-3 
024 7 |a 10.1007/978-1-4419-9816-3  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 |a Christensen, Ronald.  |e author. 
245 1 0 |a Plane Answers to Complex Questions  |h [electronic resource] :  |b The Theory of Linear Models /  |c by Ronald Christensen. 
250 |a 4. 
264 1 |a New York, NY :  |b Springer New York,  |c 2011. 
300 |a XXII, 494 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Texts in Statistics,  |x 1431-875X 
505 0 |a Introduction -- Estimation -- Testing -- One-Way ANOVA -- Multiple Comparison Techniques -- Regression Analysis -- Multifactor Analysis of Variance -- Experimental Design Models -- Analysis of Covariance -- General Gauss-Markov Models -- Split Plot Models -- Mixed Models and Variance Components -- Model Diagnostics -- Variable Selection -- Collinearity and Alternative Estimates.-. 
520 |a This textbook provides a wide-ranging introduction to the use and theory of linear models for analyzing data. The author's emphasis is on providing a unified treatment of linear models, including analysis of variance models and regression models, based on projections, orthogonality, and other vector space ideas. Every chapter comes with numerous exercises and examples that make it ideal for a graduate-level course. All of the standard topics are covered in depth: ANOVA, estimation including Bayesian estimation, hypothesis testing, multiple comparisons, regression analysis, and experimental design models. In addition, the book covers topics that are not usually treated at this level, but which are important in their own right: balanced incomplete block designs, testing for lack of fit, testing for independence, models with singular covariance matrices, variance component estimation, best linear and best linear unbiased prediction, collinearity, and variable selection. This new edition includes a more extensive discussion of best prediction and associated ideas of R2, as well as new sections on inner products and perpendicular projections for more general spaces and Milliken and Graybill’s generalization of Tukey’s one degree of freedom for nonadditivity test. 
650 0 |a Statistics. 
650 1 4 |a Statistics. 
650 2 4 |a Statistical Theory and Methods. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781441998156 
830 0 |a Springer Texts in Statistics,  |x 1431-875X 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4419-9816-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)