A Logical Introduction to Proof

A Logical Introduction to Proof is a unique textbook that uses a logic-first approach to train and guide undergraduates through a transition or “bridge” course  between calculus and advanced mathematics courses.  The author’s approach  prepares the student for the rigors required in future mathemati...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Cunningham, Daniel W. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2013.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03551nam a22004215i 4500
001 978-1-4614-3631-7
003 DE-He213
005 20151204190018.0
007 cr nn 008mamaa
008 120919s2013 xxu| s |||| 0|eng d
020 |a 9781461436317  |9 978-1-4614-3631-7 
024 7 |a 10.1007/978-1-4614-3631-7  |2 doi 
040 |d GrThAP 
050 4 |a QA1-939 
072 7 |a PB  |2 bicssc 
072 7 |a MAT000000  |2 bisacsh 
082 0 4 |a 510  |2 23 
100 1 |a Cunningham, Daniel W.  |e author. 
245 1 2 |a A Logical Introduction to Proof  |h [electronic resource] /  |c by Daniel W. Cunningham. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 |a XVI, 356 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface -- The Greek Alphabet -- 1. Propositional Logic -- 2. Predicate Logic -- 3. Proof Strategies and Diagrams -- 4. Mathematical Induction -- 5. Set Theory -- 6. Functions -- 7. Relations -- 8. Core Concepts in Abstract Algebra -- 9. Core Concepts in Real Analysis -- A Summary of Strategies -- References -- List of Symbols. Index. 
520 |a A Logical Introduction to Proof is a unique textbook that uses a logic-first approach to train and guide undergraduates through a transition or “bridge” course  between calculus and advanced mathematics courses.  The author’s approach  prepares the student for the rigors required in future mathematics courses and is appropriate for majors in mathematics, computer science, engineering, as well as other applied mathematical sciences. It may also be beneficial as a supplement for students at the graduate level who need guidance or reference for writing proofs.   Core topics covered are logic, sets, relations, functions, and induction, where logic is the instrument for analyzing the structure of mathematical assertions and is a tool for composing mathematical proofs. Exercises are given at the end of each section within a chapter. Chapter 1 focuses on propositional logic while Chapter 2 is devoted to the logic of quantifiers. Chapter 3 methodically presents the key strategies that are used in mathematical proofs; each presented as a proof diagram. Every proof strategy is carefully illustrated by a variety of mathematical theorems concerning the natural, rational, and real numbers. Chapter 4 focuses on mathematical induction and concludes with a proof of the fundamental theorem of arithmetic. Chapters 5 through 7 introduce students to the essential concepts that appear in all branches of mathematics. Chapter 8 introduces the basic structures of abstract algebra: groups, rings, quotient groups, and quotient rings. Finally, Chapter 9 presents proof strategies that explicitly show students how to deal with the fundamental definitions that they will encounter in real analysis, followed by numerous examples of proofs that use these strategies.  The appendix provides a useful summary of strategies for dealing with proofs. 
650 0 |a Mathematics. 
650 0 |a Mathematical logic. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematics, general. 
650 2 4 |a Mathematical Logic and Foundations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461436300 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4614-3631-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)