Plasticity Mathematical Theory and Numerical Analysis /
This book focuses on the theoretical aspects of small strain theory of elastoplasticity with hardening assumptions. It provides a comprehensive and unified treatment of the mathematical theory and numerical analysis. It is divided into three parts, with the first part providing a detailed introducti...
Κύριοι συγγραφείς: | , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
New York, NY :
Springer New York : Imprint: Springer,
2013.
|
Έκδοση: | 2nd ed. 2013. |
Σειρά: | Interdisciplinary Applied Mathematics,
9 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Preface to the Second Edition
- Preface to the First Edition.-Preliminaries
- Continuum Mechanics and Linearized Elasticity
- Elastoplastic Media
- The Plastic Flow Law in a Convex-Analytic Setting
- Basics of Functional Analysis and Function Spaces
- Variational Equations and Inequalities
- The Primal Variational Problem of Elastoplasticity
- The Dual Variational Problem of Classical Elastoplasticity
- Introduction to Finite Element Analysis
- Approximation of Variational Problems
- Approximations of the Abstract Problem
- Numerical Analysis of the Primal Problem
- References
- Index.-.