Learning with Recurrent Neural Networks

Folding networks, a generalisation of recurrent neural networks to tree structured inputs, are investigated as a mechanism to learn regularities on classical symbolic data, for example. The architecture, the training mechanism, and several applications in different areas are explained. Afterwards a...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Hammer, Barbara (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London : Imprint: Springer, 2000.
Έκδοση:1st ed. 2000.
Σειρά:Lecture Notes in Control and Information Sciences, 254
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03588nam a2200517 4500
001 978-1-84628-567-7
003 DE-He213
005 20191025091129.0
007 cr nn 008mamaa
008 121227s2000 xxk| s |||| 0|eng d
020 |a 9781846285677  |9 978-1-84628-567-7 
024 7 |a 10.1007/BFb0110016  |2 doi 
040 |d GrThAP 
050 4 |a TJ210.2-211.495 
050 4 |a TJ163.12 
072 7 |a TJFM  |2 bicssc 
072 7 |a TEC004000  |2 bisacsh 
072 7 |a TJFM  |2 thema 
072 7 |a TJFD  |2 thema 
082 0 4 |a 629.8  |2 23 
100 1 |a Hammer, Barbara.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Learning with Recurrent Neural Networks  |h [electronic resource] /  |c by Barbara Hammer. 
250 |a 1st ed. 2000. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2000. 
300 |a 150 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Control and Information Sciences,  |x 0170-8643 ;  |v 254 
505 0 |a Introduction, Recurrent and Folding Networks: Definitions, Training, Background, Applications -- Approximation Ability: Foundationa, Approximation in Probability, Approximation in the Maximum Norm, Discussions and Open Questions -- Learnability: The Learning Scenario, PAC Learnability, Bounds on the VC-dimension of Folding Networks, Consquences for Learnability, Lower Bounds for the LRAAM, Discussion and Open Questions -- Complexity: The Loading Problem, The Perceptron Case, The Sigmoidal Case, Discussion and Open Questions -- Conclusion. 
520 |a Folding networks, a generalisation of recurrent neural networks to tree structured inputs, are investigated as a mechanism to learn regularities on classical symbolic data, for example. The architecture, the training mechanism, and several applications in different areas are explained. Afterwards a theoretical foundation, proving that the approach is appropriate as a learning mechanism in principle, is presented: Their universal approximation ability is investigated- including several new results for standard recurrent neural networks such as explicit bounds on the required number of neurons and the super Turing capability of sigmoidal recurrent networks. The information theoretical learnability is examined - including several contribution to distribution dependent learnability, an answer to an open question posed by Vidyasagar, and a generalisation of the recent luckiness framework to function classes. Finally, the complexity of training is considered - including new results on the loading problem for standard feedforward networks with an arbitrary multilayered architecture, a correlated number of neurons and training set size, a varying number of hidden neurons but fixed input dimension, or the sigmoidal activation function, respectively. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Mechatronics. 
650 1 4 |a Control, Robotics, Mechatronics.  |0 http://scigraph.springernature.com/things/product-market-codes/T19000 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781447139591 
776 0 8 |i Printed edition:  |z 9781852333430 
830 0 |a Lecture Notes in Control and Information Sciences,  |x 0170-8643 ;  |v 254 
856 4 0 |u https://doi.org/10.1007/BFb0110016  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
912 |a ZDB-2-LNI 
912 |a ZDB-2-BAE 
950 |a Engineering (Springer-11647)