Learning with Recurrent Neural Networks
Folding networks, a generalisation of recurrent neural networks to tree structured inputs, are investigated as a mechanism to learn regularities on classical symbolic data, for example. The architecture, the training mechanism, and several applications in different areas are explained. Afterwards a...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
London :
Springer London : Imprint: Springer,
2000.
|
Έκδοση: | 1st ed. 2000. |
Σειρά: | Lecture Notes in Control and Information Sciences,
254 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Introduction, Recurrent and Folding Networks: Definitions, Training, Background, Applications
- Approximation Ability: Foundationa, Approximation in Probability, Approximation in the Maximum Norm, Discussions and Open Questions
- Learnability: The Learning Scenario, PAC Learnability, Bounds on the VC-dimension of Folding Networks, Consquences for Learnability, Lower Bounds for the LRAAM, Discussion and Open Questions
- Complexity: The Loading Problem, The Perceptron Case, The Sigmoidal Case, Discussion and Open Questions
- Conclusion.