Learning with Recurrent Neural Networks

Folding networks, a generalisation of recurrent neural networks to tree structured inputs, are investigated as a mechanism to learn regularities on classical symbolic data, for example. The architecture, the training mechanism, and several applications in different areas are explained. Afterwards a...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Hammer, Barbara (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London : Imprint: Springer, 2000.
Έκδοση:1st ed. 2000.
Σειρά:Lecture Notes in Control and Information Sciences, 254
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Introduction, Recurrent and Folding Networks: Definitions, Training, Background, Applications
  • Approximation Ability: Foundationa, Approximation in Probability, Approximation in the Maximum Norm, Discussions and Open Questions
  • Learnability: The Learning Scenario, PAC Learnability, Bounds on the VC-dimension of Folding Networks, Consquences for Learnability, Lower Bounds for the LRAAM, Discussion and Open Questions
  • Complexity: The Loading Problem, The Perceptron Case, The Sigmoidal Case, Discussion and Open Questions
  • Conclusion.