Critical Point Theory for Lagrangian Systems

Lagrangian systems constitute a very important and old class in dynamics. Their origin dates back to the end of the eighteenth century, with Joseph-Louis Lagrange’s reformulation of classical mechanics. The main feature of Lagrangian dynamics is its variational flavor: orbits are extremal points of...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Mazzucchelli, Marco (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Springer Basel, 2012.
Σειρά:Progress in Mathematics ; 293
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02726nam a22005175i 4500
001 978-3-0348-0163-8
003 DE-He213
005 20151125222233.0
007 cr nn 008mamaa
008 111115s2012 sz | s |||| 0|eng d
020 |a 9783034801638  |9 978-3-0348-0163-8 
024 7 |a 10.1007/978-3-0348-0163-8  |2 doi 
040 |d GrThAP 
050 4 |a QA401-425 
050 4 |a QC19.2-20.85 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
082 0 4 |a 530.15  |2 23 
100 1 |a Mazzucchelli, Marco.  |e author. 
245 1 0 |a Critical Point Theory for Lagrangian Systems  |h [electronic resource] /  |c by Marco Mazzucchelli. 
264 1 |a Basel :  |b Springer Basel,  |c 2012. 
300 |a XII, 188 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics ;  |v 293 
505 0 |a 1 Lagrangian and Hamiltonian systems -- 2 Functional setting for the Lagrangian action -- 3 Discretizations -- 4 Local homology and Hilbert subspaces -- 5 Periodic orbits of Tonelli Lagrangian systems -- A An overview of Morse theory.-Bibliography -- List of symbols -- Index. 
520 |a Lagrangian systems constitute a very important and old class in dynamics. Their origin dates back to the end of the eighteenth century, with Joseph-Louis Lagrange’s reformulation of classical mechanics. The main feature of Lagrangian dynamics is its variational flavor: orbits are extremal points of an action functional. The development of critical point theory in the twentieth century provided a powerful machinery to investigate existence and multiplicity questions for orbits of Lagrangian systems. This monograph gives a modern account of the application of critical point theory, and more specifically Morse theory, to Lagrangian dynamics, with particular emphasis toward existence and multiplicity of periodic orbits of non-autonomous and time-periodic systems. 
650 0 |a Mathematics. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 0 |a Mathematical physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematical Physics. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783034801621 
830 0 |a Progress in Mathematics ;  |v 293 
856 4 0 |u http://dx.doi.org/10.1007/978-3-0348-0163-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)