Real Quaternionic Calculus Handbook

Real quaternion analysis is a multi-faceted subject. Created to describe phenomena in special relativity, electrodynamics, spin etc., it has developed into a body of material that interacts with many branches of mathematics, such as complex analysis, harmonic analysis, differential geometry, and dif...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Morais, João Pedro (Συγγραφέας), Georgiev, Svetlin (Συγγραφέας), Sprößig, Wolfgang (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Basel : Springer Basel : Imprint: Birkhäuser, 2014.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03479nam a22005535i 4500
001 978-3-0348-0622-0
003 DE-He213
005 20151204153727.0
007 cr nn 008mamaa
008 140108s2014 sz | s |||| 0|eng d
020 |a 9783034806220  |9 978-3-0348-0622-0 
024 7 |a 10.1007/978-3-0348-0622-0  |2 doi 
040 |d GrThAP 
050 4 |a QA252-252.5 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.48  |2 23 
100 1 |a Morais, João Pedro.  |e author. 
245 1 0 |a Real Quaternionic Calculus Handbook  |h [electronic resource] /  |c by João Pedro Morais, Svetlin Georgiev, Wolfgang Sprößig. 
264 1 |a Basel :  |b Springer Basel :  |b Imprint: Birkhäuser,  |c 2014. 
300 |a XII, 216 p. 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a 1 An introduction to quaternions -- 2 Quaternions and spatial rotation -- 3 Quaternion sequences -- 4 Quaternion series and infinite products -- 5 Exponents and logarithms -- 6 Trigonometric functions -- 7 Hyperbolic functions -- 8 Inverse hyperbolic and trigonometric functions -- 9 Quaternion matrices -- 10 Monomials, polynomials and binomials -- 11 Solutions -- Bibliography -- Index. 
520 |a Real quaternion analysis is a multi-faceted subject. Created to describe phenomena in special relativity, electrodynamics, spin etc., it has developed into a body of material that interacts with many branches of mathematics, such as complex analysis, harmonic analysis, differential geometry, and differential equations. It is also a ubiquitous factor in the description and elucidation of problems in mathematical physics. In the meantime real quaternion analysis has become a well established branch in mathematics and has been greatly successful in many different directions. This book is based on concrete examples and exercises rather than general theorems, thus making it suitable for an introductory one- or two-semester undergraduate course on some of the major aspects of real quaternion analysis in exercises. Alternatively, it may be used for beginning graduate level courses and as a reference work. With exercises at the end of each chapter and its straightforward writing style the book addresses readers who have no prior knowledge on this subject but have a basic background in graduate mathematics courses, such as real and complex analysis, ordinary differential equations, partial differential equations, and theory of distributions. 
650 0 |a Mathematics. 
650 0 |a Matrix theory. 
650 0 |a Algebra. 
650 0 |a Nonassociative rings. 
650 0 |a Rings (Algebra). 
650 0 |a Functions of complex variables. 
650 0 |a Geometry. 
650 0 |a Combinatorics. 
650 1 4 |a Mathematics. 
650 2 4 |a Non-associative Rings and Algebras. 
650 2 4 |a Functions of a Complex Variable. 
650 2 4 |a Combinatorics. 
650 2 4 |a Linear and Multilinear Algebras, Matrix Theory. 
650 2 4 |a Geometry. 
700 1 |a Georgiev, Svetlin.  |e author. 
700 1 |a Sprößig, Wolfgang.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783034806213 
856 4 0 |u http://dx.doi.org/10.1007/978-3-0348-0622-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)