The Dynamics of Nonlinear Reaction-Diffusion Equations with Small Lévy Noise

This work considers a small random perturbation of alpha-stable jump type nonlinear reaction-diffusion equations with Dirichlet boundary conditions over an interval. It has two stable points whose domains of attraction meet in a separating manifold with several saddle points. Extending a method deve...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Debussche, Arnaud (Συγγραφέας), Högele, Michael (Συγγραφέας), Imkeller, Peter (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2013.
Σειρά:Lecture Notes in Mathematics, 2085
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03040nam a22005535i 4500
001 978-3-319-00828-8
003 DE-He213
005 20151204190644.0
007 cr nn 008mamaa
008 130930s2013 gw | s |||| 0|eng d
020 |a 9783319008288  |9 978-3-319-00828-8 
024 7 |a 10.1007/978-3-319-00828-8  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Debussche, Arnaud.  |e author. 
245 1 4 |a The Dynamics of Nonlinear Reaction-Diffusion Equations with Small Lévy Noise  |h [electronic resource] /  |c by Arnaud Debussche, Michael Högele, Peter Imkeller. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2013. 
300 |a XIV, 165 p. 9 illus., 8 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2085 
505 0 |a Introduction -- The fine dynamics of the Chafee- Infante equation -- The stochastic Chafee- Infante equation -- The small deviation of the small noise solution -- Asymptotic exit times -- Asymptotic transition times -- Localization and metastability -- The source of stochastic models in conceptual climate dynamics. 
520 |a This work considers a small random perturbation of alpha-stable jump type nonlinear reaction-diffusion equations with Dirichlet boundary conditions over an interval. It has two stable points whose domains of attraction meet in a separating manifold with several saddle points. Extending a method developed by Imkeller and Pavlyukevich it proves that in contrast to a Gaussian perturbation, the expected exit and transition times between the domains of attraction depend polynomially on the noise intensity in the small intensity limit. Moreover the solution exhibits metastable behavior: there is a polynomial time scale along which the solution dynamics correspond asymptotically to the dynamic behavior of a finite-state Markov chain switching between the stable states. 
650 0 |a Mathematics. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Partial differential equations. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Partial Differential Equations. 
700 1 |a Högele, Michael.  |e author. 
700 1 |a Imkeller, Peter.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319008271 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2085 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-00828-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)