Geometric Control Theory and Sub-Riemannian Geometry

This volume presents recent advances in the interaction between Geometric Control Theory and sub-Riemannian geometry. On the one hand, Geometric Control Theory used the differential geometric and Lie algebraic language for studying controllability, motion planning, stabilizability and optimality for...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Stefani, Gianna (Επιμελητής έκδοσης), Boscain, Ugo (Επιμελητής έκδοσης), Gauthier, Jean-Paul (Επιμελητής έκδοσης), Sarychev, Andrey (Επιμελητής έκδοσης), Sigalotti, Mario (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Σειρά:Springer INdAM Series, 5
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05082nam a22005895i 4500
001 978-3-319-02132-4
003 DE-He213
005 20151204171055.0
007 cr nn 008mamaa
008 140605s2014 gw | s |||| 0|eng d
020 |a 9783319021324  |9 978-3-319-02132-4 
024 7 |a 10.1007/978-3-319-02132-4  |2 doi 
040 |d GrThAP 
050 4 |a QA315-316 
050 4 |a QA402.3 
050 4 |a QA402.5-QA402.6 
072 7 |a PBKQ  |2 bicssc 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT005000  |2 bisacsh 
072 7 |a MAT029020  |2 bisacsh 
082 0 4 |a 515.64  |2 23 
245 1 0 |a Geometric Control Theory and Sub-Riemannian Geometry  |h [electronic resource] /  |c edited by Gianna Stefani, Ugo Boscain, Jean-Paul Gauthier, Andrey Sarychev, Mario Sigalotti. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XII, 384 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer INdAM Series,  |x 2281-518X ;  |v 5 
505 0 |a 1 A. A. Agrachev - Some open problems -- 2 D. Barilari, A. Lerario - Geometry of Maslov cycles -- 3 Y. Baryshnikov, B. Shapiro - How to Run a Centipede: a Topological Perspective -- 4 B. Bonnard, O. Cots, L. Jassionnesse - Geometric and numerical techniques to compute conjugate and cut loci on Riemannian surfaces -- 5 J-B. Caillau, C. Royer - On the injectivity and nonfocal domains of the ellipsoid of revolution -- 6 P. Cannarsa, R. Guglielmi - Null controllability in large time for the parabolic Grushin operator with singular potential -- 7 Y. Chitour, M. Godoy Molina, P. Kokkonen - The rolling problem: overview and challenges -- 8 A. A. Davydov, A. S. Platov - Optimal stationary exploitation of size-structured population with intra-specific competition -- 9 B. Doubrov, I. Zelenko - On geometry of affine control systems with one input -- 10 B. Franchi, V. Penso, R. Serapioni - Remarks on Lipschitz domains in Carnot groups -- 11 R. V. Gamkrelidze - Differential-geometric and invariance properties of the equations of Maximum Principle (MP) -- 12 N. Garofalo - Curvature-dimension inequalities and Li-Yau inequalities in sub-Riemannian spaces -- 13 R. Ghezzi, F. Jean - Hausdorff measures and dimensions in non equiregular sub-Riemannian manifolds -- 14 V. Jurdjevic - The Delauney-Dubins Problem -- 15 M. Karmanova, S. Vodopyanov - On Local Approximation Theorem on Equiregular Carnot–Carathéodory spaces -- 16 C. Li - On curvature-type invariants for natural mechanical systems on sub-Riemannian structures associated with a principle G-bundle -- 17 I. Markina, S. Wojtowytsch - On the Alexandrov Topology of sub-Lorentzian Manifolds -- 18 R. Monti - The regularity problem for sub-Riemannian geodesics -- 19 L. Poggiolini, G. Stefani - A case study in strong optimality and structural stability of bang–singular extremals -- 20 A. Shirikyan - Approximate controllability of the viscous Burgers equation on the real line -- 21 M. Zhitomirskii - Homogeneous affine line fields and affine line fields in Lie algebras. 
520 |a This volume presents recent advances in the interaction between Geometric Control Theory and sub-Riemannian geometry. On the one hand, Geometric Control Theory used the differential geometric and Lie algebraic language for studying controllability, motion planning, stabilizability and optimality for control systems. The geometric approach turned out to be fruitful in applications to robotics, vision modeling, mathematical physics etc. On the other hand, Riemannian geometry and its generalizations, such as  sub-Riemannian, Finslerian  geometry etc., have been actively adopting methods developed in the scope of geometric control. Application of these methods  has led to important results regarding geometry of sub-Riemannian spaces, regularity of sub-Riemannian distances, properties of the group  of diffeomorphisms of sub-Riemannian manifolds, local geometry and equivalence of distributions and sub-Riemannian structures, regularity of the Hausdorff volume. 
650 0 |a Mathematics. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 0 |a Differential geometry. 
650 0 |a Calculus of variations. 
650 1 4 |a Mathematics. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
650 2 4 |a Differential Geometry. 
700 1 |a Stefani, Gianna.  |e editor. 
700 1 |a Boscain, Ugo.  |e editor. 
700 1 |a Gauthier, Jean-Paul.  |e editor. 
700 1 |a Sarychev, Andrey.  |e editor. 
700 1 |a Sigalotti, Mario.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319021317 
830 0 |a Springer INdAM Series,  |x 2281-518X ;  |v 5 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-02132-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)