Lectures on the Nearest Neighbor Method
This text presents a wide-ranging and rigorous overview of nearest neighbor methods, one of the most important paradigms in machine learning. Now in one self-contained volume, this book systematically covers key statistical, probabilistic, combinatorial and geometric ideas for understanding, analyzi...
Κύριοι συγγραφείς: | , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2015.
|
Έκδοση: | 1st ed. 2015. |
Σειρά: | Springer Series in the Data Sciences,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Part I: Density Estimation
- Order Statistics and Nearest Neighbors
- The Expected Nearest Neighbor Distance
- The k-nearest Neighbor Density Estimate
- Uniform Consistency
- Weighted k-nearest neighbor density estimates.- Local Behavior
- Entropy Estimation
- Part II: Regression Estimation
- The Nearest Neighbor Regression Function Estimate
- The 1-nearest Neighbor Regression Function Estimate
- LP-consistency and Stone's Theorem
- Pointwise Consistency
- Uniform Consistency
- Advanced Properties of Uniform Order Statistics
- Rates of Convergence
- Regression: The Noisless Case
- The Choice of a Nearest Neighbor Estimate
- Part III: Supervised Classification
- Basics of Classification
- The 1-nearest Neighbor Classification Rule
- The Nearest Neighbor Classification Rule. Appendix
- Index.