Robust and Distributed Hypothesis Testing

This book generalizes and extends the available theory in robust and decentralized hypothesis testing. In particular, it presents a robust test for modeling errors which is independent from the assumptions that a sufficiently large number of samples is available, and that the distance is the KL-dive...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Gül, Gökhan (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Lecture Notes in Electrical Engineering, 414
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03551nam a22005175i 4500
001 978-3-319-49286-5
003 DE-He213
005 20170308095457.0
007 cr nn 008mamaa
008 170308s2017 gw | s |||| 0|eng d
020 |a 9783319492865  |9 978-3-319-49286-5 
024 7 |a 10.1007/978-3-319-49286-5  |2 doi 
040 |d GrThAP 
050 4 |a TK5102.9 
050 4 |a TA1637-1638 
050 4 |a TK7882.S65 
072 7 |a TTBM  |2 bicssc 
072 7 |a UYS  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a COM073000  |2 bisacsh 
082 0 4 |a 621.382  |2 23 
100 1 |a Gül, Gökhan.  |e author. 
245 1 0 |a Robust and Distributed Hypothesis Testing  |h [electronic resource] /  |c by Gökhan Gül. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XXI, 141 p. 42 illus., 40 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Electrical Engineering,  |x 1876-1100 ;  |v 414 
505 0 |a Introduction -- Background -- Robust Hypothesis Testing with a Single Distance -- Robust Hypothesis Testing with Multiple Distances -- Robust Hypothesis Testing with Repeated Observations -- Robust Decentralized Hypothesis Testing -- Minimax Decentralized Hypothesis Testing -- Conclusions and Outlook. 
520 |a This book generalizes and extends the available theory in robust and decentralized hypothesis testing. In particular, it presents a robust test for modeling errors which is independent from the assumptions that a sufficiently large number of samples is available, and that the distance is the KL-divergence. Here, the distance can be chosen from a much general model, which includes the KL-divergence as a very special case. This is then extended by various means. A minimax robust test that is robust against both outliers as well as modeling errors is presented. Minimax robustness properties of the given tests are also explicitly proven for fixed sample size and sequential probability ratio tests. The theory of robust detection is extended to robust estimation and the theory of robust distributed detection is extended to classes of distributions, which are not necessarily stochastically bounded. It is shown that the quantization functions for the decision rules can also be chosen as non-monotone. Finally, the book describes the derivation of theoretical bounds in minimax decentralized hypothesis testing, which have not yet been known. As a timely report on the state-of-the-art in robust hypothesis testing, this book is mainly intended for postgraduates and researchers in the field of electrical and electronic engineering, statistics and applied probability. Moreover, it may be of interest for students and researchers working in the field of classification, pattern recognition and cognitive radio. 
650 0 |a Engineering. 
650 0 |a Pattern recognition. 
650 0 |a Statistics. 
650 1 4 |a Engineering. 
650 2 4 |a Signal, Image and Speech Processing. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Pattern Recognition. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319492858 
830 0 |a Lecture Notes in Electrical Engineering,  |x 1876-1100 ;  |v 414 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-49286-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)