Ramanujan's Theta Functions

Theta functions were studied extensively by Ramanujan. This book provides a systematic development of Ramanujan’s results and extends them to a general theory. The author’s treatment of the subject is comprehensive, providing a detailed study of theta functions and modular forms for levels up to 12....

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Cooper, Shaun (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02768nam a22004335i 4500
001 978-3-319-56172-1
003 DE-He213
005 20180102141812.0
007 cr nn 008mamaa
008 170612s2017 gw | s |||| 0|eng d
020 |a 9783319561721  |9 978-3-319-56172-1 
024 7 |a 10.1007/978-3-319-56172-1  |2 doi 
040 |d GrThAP 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
082 0 4 |a 512.7  |2 23 
100 1 |a Cooper, Shaun.  |e author. 
245 1 0 |a Ramanujan's Theta Functions  |h [electronic resource] /  |c by Shaun Cooper. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XVIII, 687 p. 1 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface -- 0. Sum to Product Identities -- 1. Elliptic Functions -- 2. Transformations -- 3. Theta Functions -- 4. Levels 1, 2, 3, and 4: Jacobi's Inversion Theorem and Ramanujan's Alternative Theories -- 5. Level 5: The Rogers-Ramanujan Continued Fraction -- 6. Level 6: Ramanujan's Cubic Continued Fraction -- 7. Level 7 -- 8. Level 8: The Ramanujan-Gollnitz-Gordon Continued Fraction -- 9. Level 9 -- 10. Level 10: Ramanujan's Function k -- 11. Levels 11 and 23 -- 12. Level 12 -- 13. Hypergeometric Modular Transformations -- 14. Ramanujan's Series for 1/pi -- References. 
520 |a Theta functions were studied extensively by Ramanujan. This book provides a systematic development of Ramanujan’s results and extends them to a general theory. The author’s treatment of the subject is comprehensive, providing a detailed study of theta functions and modular forms for levels up to 12.  Aimed at advanced undergraduates, graduate students, and researchers, the organization, user-friendly presentation, and rich source of examples, lends this book to serve as a useful reference, a pedagogical tool, and a stimulus for further research. Topics, especially those discussed in the second half of the book, have been the subject of much recent research; many of which are appearing in book form for the first time. Further results are summarized in the numerous exercises at the end of each chapter. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Number Theory. 
650 2 4 |a Algebraic Geometry. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319561714 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-56172-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)