From Riemann to Differential Geometry and Relativity

This book explores the work of Bernhard Riemann and its impact on mathematics, philosophy and physics. It features contributions from a range of fields, historical expositions, and selected research articles that were motivated by Riemann’s ideas and demonstrate their timelessness. The editors are c...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Ji, Lizhen (Επιμελητής έκδοσης), Papadopoulos, Athanase (Επιμελητής έκδοσης), Yamada, Sumio (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Preface
  • Introduction
  • 1.Athanase Papadopoulos: Looking backward: From Euler to Riemann
  • 2.Jeremey Gray: Riemann on geometry, physics, and philosophy – some remarks
  • 3.Hubert Goenner: Some remarks on a contribution to electrodynamics by Bernhard Riemann
  • 4.Christian Houzel: Riemann's Memoir Über das Verschwinden der Theta-Functionen
  • 5.Sumio Yamada: Riemann's work on minimal surfaces
  • 6. Athanase Papadopoulos: Physics in Riemann's mathematical papers
  • 7.Athanase Papadopoulos: Cauchy and Puiseux: Two precursors of Riemann
  • 8.Athanase Papadopoulos: Riemann surfaces: Reception by the French school
  • 9.Ken'ichi Ohshika: The origin of the notion of manifold: from Riemann's Habilitationsvortrag onward
  • 10.Franck Jedrzejewski: Deleuze et la géométrie riemannienne : une topologie des multiplicités
  • 11.Arkady Plotnitsky: Comprehending the Connection of Things: Bernhard Riemann and the Architecture of Mathematical Concepts
  • 12.Feng Luo: The Riemann mapping theorem and its discrete counterparts
  • 13.Norbert A'Campo, Vincent Alberge and Elena Frenkel: The Riemann–Roch theorem
  • 14.Victor Pambuccian, Horst Struve and Rolf Struve: Metric geometries in an axiomatic perspective
  • 15.Toshikazu Sunada: Generalized Riemann sums
  • 16.Jacques Franchi: From Riemannian to Relativistic Diffusions
  • 17.Andreas Hermann and Emmanuel Humbert: On the Positive Mass Theorem for closed Riemannian manifolds
  • 18.Marc Mars: On local characterization results in geometry and gravitation
  • 19.Jean-Philippe Nicolas: The conformal approach to asymptotic analysis
  • 20.Lizhen Ji: Bernhard Riemann and his work.