From Riemann to Differential Geometry and Relativity
This book explores the work of Bernhard Riemann and its impact on mathematics, philosophy and physics. It features contributions from a range of fields, historical expositions, and selected research articles that were motivated by Riemann’s ideas and demonstrate their timelessness. The editors are c...
Συγγραφή απο Οργανισμό/Αρχή: | |
---|---|
Άλλοι συγγραφείς: | , , |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2017.
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Preface
- Introduction
- 1.Athanase Papadopoulos: Looking backward: From Euler to Riemann
- 2.Jeremey Gray: Riemann on geometry, physics, and philosophy – some remarks
- 3.Hubert Goenner: Some remarks on a contribution to electrodynamics by Bernhard Riemann
- 4.Christian Houzel: Riemann's Memoir Über das Verschwinden der Theta-Functionen
- 5.Sumio Yamada: Riemann's work on minimal surfaces
- 6. Athanase Papadopoulos: Physics in Riemann's mathematical papers
- 7.Athanase Papadopoulos: Cauchy and Puiseux: Two precursors of Riemann
- 8.Athanase Papadopoulos: Riemann surfaces: Reception by the French school
- 9.Ken'ichi Ohshika: The origin of the notion of manifold: from Riemann's Habilitationsvortrag onward
- 10.Franck Jedrzejewski: Deleuze et la géométrie riemannienne : une topologie des multiplicités
- 11.Arkady Plotnitsky: Comprehending the Connection of Things: Bernhard Riemann and the Architecture of Mathematical Concepts
- 12.Feng Luo: The Riemann mapping theorem and its discrete counterparts
- 13.Norbert A'Campo, Vincent Alberge and Elena Frenkel: The Riemann–Roch theorem
- 14.Victor Pambuccian, Horst Struve and Rolf Struve: Metric geometries in an axiomatic perspective
- 15.Toshikazu Sunada: Generalized Riemann sums
- 16.Jacques Franchi: From Riemannian to Relativistic Diffusions
- 17.Andreas Hermann and Emmanuel Humbert: On the Positive Mass Theorem for closed Riemannian manifolds
- 18.Marc Mars: On local characterization results in geometry and gravitation
- 19.Jean-Philippe Nicolas: The conformal approach to asymptotic analysis
- 20.Lizhen Ji: Bernhard Riemann and his work.