From Riemann to Differential Geometry and Relativity

This book explores the work of Bernhard Riemann and its impact on mathematics, philosophy and physics. It features contributions from a range of fields, historical expositions, and selected research articles that were motivated by Riemann’s ideas and demonstrate their timelessness. The editors are c...

Full description

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Ji, Lizhen (Editor), Papadopoulos, Athanase (Editor), Yamada, Sumio (Editor)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2017.
Subjects:
Online Access:Full Text via HEAL-Link
Table of Contents:
  • Preface
  • Introduction
  • 1.Athanase Papadopoulos: Looking backward: From Euler to Riemann
  • 2.Jeremey Gray: Riemann on geometry, physics, and philosophy – some remarks
  • 3.Hubert Goenner: Some remarks on a contribution to electrodynamics by Bernhard Riemann
  • 4.Christian Houzel: Riemann's Memoir Über das Verschwinden der Theta-Functionen
  • 5.Sumio Yamada: Riemann's work on minimal surfaces
  • 6. Athanase Papadopoulos: Physics in Riemann's mathematical papers
  • 7.Athanase Papadopoulos: Cauchy and Puiseux: Two precursors of Riemann
  • 8.Athanase Papadopoulos: Riemann surfaces: Reception by the French school
  • 9.Ken'ichi Ohshika: The origin of the notion of manifold: from Riemann's Habilitationsvortrag onward
  • 10.Franck Jedrzejewski: Deleuze et la géométrie riemannienne : une topologie des multiplicités
  • 11.Arkady Plotnitsky: Comprehending the Connection of Things: Bernhard Riemann and the Architecture of Mathematical Concepts
  • 12.Feng Luo: The Riemann mapping theorem and its discrete counterparts
  • 13.Norbert A'Campo, Vincent Alberge and Elena Frenkel: The Riemann–Roch theorem
  • 14.Victor Pambuccian, Horst Struve and Rolf Struve: Metric geometries in an axiomatic perspective
  • 15.Toshikazu Sunada: Generalized Riemann sums
  • 16.Jacques Franchi: From Riemannian to Relativistic Diffusions
  • 17.Andreas Hermann and Emmanuel Humbert: On the Positive Mass Theorem for closed Riemannian manifolds
  • 18.Marc Mars: On local characterization results in geometry and gravitation
  • 19.Jean-Philippe Nicolas: The conformal approach to asymptotic analysis
  • 20.Lizhen Ji: Bernhard Riemann and his work.