Deep Learning for Biometrics

This timely text/reference presents a broad overview of advanced deep learning architectures for learning effective feature representation for perceptual and biometrics-related tasks. The text offers a showcase of cutting-edge research on the use of convolutional neural networks (CNN) in face, iris,...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Bhanu, Bir (Επιμελητής έκδοσης), Kumar, Ajay (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Advances in Computer Vision and Pattern Recognition,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Part I: Deep Learning for Face Biometrics
  • The Functional Neuroanatomy of Face Processing: Insights from Neuroimaging and Implications for Deep Learning
  • Real-Time Face Identification via Multi-Convolutional Neural Network and Boosted Hashing Forest
  • CMS-RCNN: Contextual Multi-Scale Region-Based CNN for Unconstrained Face Detection
  • Part II: Deep Learning for Fingerprint, Fingervein and Iris Recognition
  • Latent Fingerprint Image Segmentation Using Deep Neural Networks
  • Finger Vein Identification Using Convolutional Neural Network and Supervised Discrete Hashing
  • Iris Segmentation Using Fully Convolutional Encoder-Decoder Networks
  • Part III: Deep Learning for Soft Biometrics
  • Two-Stream CNNs for Gesture-Based Verification and Identification: Learning User Style
  • DeepGender2: A Generative Approach Toward Occlusion and Low Resolution Robust Facial Gender Classification via Progressively Trained Attention Shift Convolutional Neural Networks (PTAS-CNN) and Deep Convolutional Generative Adversarial Networks (DCGAN)
  • Gender Classification from NIR Iris Images Using Deep Learning
  • Deep Learning for Tattoo Recognition
  • Part IV: Deep Learning for Biometric Security and Protection
  • Learning Representations for Cryptographic Hash Based Face Template Protection
  • Deep Triplet Embedding Representations for Liveness Detection.