Painlevé III: A Case Study in the Geometry of Meromorphic Connections

The purpose of this monograph is two-fold:  it introduces a conceptual language for the geometrical objects underlying Painlevé equations,  and it offers new results on a particular Painlevé III equation of type  PIII (D6), called PIII (0, 0, 4, −4), describing its relation to isomonodromic families...

Full description

Bibliographic Details
Main Authors: Guest, Martin A. (Author), Hertling, Claus (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2017.
Series:Lecture Notes in Mathematics, 2198
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 03418nam a22005295i 4500
001 978-3-319-66526-9
003 DE-He213
005 20171015000425.0
007 cr nn 008mamaa
008 171015s2017 gw | s |||| 0|eng d
020 |a 9783319665269  |9 978-3-319-66526-9 
024 7 |a 10.1007/978-3-319-66526-9  |2 doi 
040 |d GrThAP 
050 4 |a QA372 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.352  |2 23 
100 1 |a Guest, Martin A.  |e author. 
245 1 0 |a Painlevé III: A Case Study in the Geometry of Meromorphic Connections  |h [electronic resource] /  |c by Martin A. Guest, Claus Hertling. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XII, 204 p. 12 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2198 
505 0 |a 1. Introduction -- 2.- The Riemann-Hilbert correspondence for P3D6 bundles -- 3. (Ir)Reducibility -- 4. Isomonodromic families -- 5. Useful formulae: three 2 × 2 matrices --  6. P3D6-TEP bundles -- 7. P3D6-TEJPA bundles and moduli spaces of their monodromy tuples -- 8. Normal forms of P3D6-TEJPA bundles and their moduli spaces -- 9. Generalities on the Painleve´ equations -- 10. Solutions of the Painleve´ equation PIII (0, 0, 4, −4) -- 13. Comparison with the setting of Its, Novokshenov, and Niles -- 12.  Asymptotics of all solutions near 0 -- ...Bibliography. Index. 
520 |a The purpose of this monograph is two-fold:  it introduces a conceptual language for the geometrical objects underlying Painlevé equations,  and it offers new results on a particular Painlevé III equation of type  PIII (D6), called PIII (0, 0, 4, −4), describing its relation to isomonodromic families of vector bundles on P1  with meromorphic connections.  This equation is equivalent to the radial sine (or sinh) Gordon equation and, as such, it appears widely in geometry and physics.   It is used here as a very concrete and classical illustration of the modern theory of vector bundles with meromorphic connections. Complex multi-valued solutions on C* are the natural context for most of the monograph, but in the last four chapters real solutions on R>0 (with or without singularities) are addressed.  These provide examples of variations of TERP structures, which are related to  tt∗ geometry and harmonic bundles.    As an application, a new global picture of0 is given. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Functions of complex variables. 
650 0 |a Differential equations. 
650 0 |a Special functions. 
650 1 4 |a Mathematics. 
650 2 4 |a Ordinary Differential Equations. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Special Functions. 
650 2 4 |a Functions of a Complex Variable. 
700 1 |a Hertling, Claus.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319665252 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2198 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-66526-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)