Reinforcement Learning for Optimal Feedback Control A Lyapunov-Based Approach /

Reinforcement Learning for Optimal Feedback Control develops model-based and data-driven reinforcement learning methods for solving optimal control problems in nonlinear deterministic dynamical systems. In order to achieve learning under uncertainty, data-driven methods for identifying system models...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Kamalapurkar, Rushikesh (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Walters, Patrick (http://id.loc.gov/vocabulary/relators/aut), Rosenfeld, Joel (http://id.loc.gov/vocabulary/relators/aut), Dixon, Warren (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Communications and Control Engineering,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04446nam a2200565 4500
001 978-3-319-78384-0
003 DE-He213
005 20191027042704.0
007 cr nn 008mamaa
008 180510s2018 gw | s |||| 0|eng d
020 |a 9783319783840  |9 978-3-319-78384-0 
024 7 |a 10.1007/978-3-319-78384-0  |2 doi 
040 |d GrThAP 
050 4 |a TJ212-225 
072 7 |a TJFM  |2 bicssc 
072 7 |a TEC004000  |2 bisacsh 
072 7 |a TJFM  |2 thema 
082 0 4 |a 629.8  |2 23 
100 1 |a Kamalapurkar, Rushikesh.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Reinforcement Learning for Optimal Feedback Control  |h [electronic resource] :  |b A Lyapunov-Based Approach /  |c by Rushikesh Kamalapurkar, Patrick Walters, Joel Rosenfeld, Warren Dixon. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XVI, 293 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Communications and Control Engineering,  |x 0178-5354 
505 0 |a Chapter 1. Optimal control -- Chapter 2. Approximate dynamic programming -- Chapter 3. Excitation-based online approximate optimal control -- Chapter 4. Model-based reinforcement learning for approximate optimal control -- Chapter 5. Differential Graphical Games -- Chapter 6. Applications -- Chapter 7. Computational considerations -- Reference -- Index. 
520 |a Reinforcement Learning for Optimal Feedback Control develops model-based and data-driven reinforcement learning methods for solving optimal control problems in nonlinear deterministic dynamical systems. In order to achieve learning under uncertainty, data-driven methods for identifying system models in real-time are also developed. The book illustrates the advantages gained from the use of a model and the use of previous experience in the form of recorded data through simulations and experiments. The book's focus on deterministic systems allows for an in-depth Lyapunov-based analysis of the performance of the methods described during the learning phase and during execution. To yield an approximate optimal controller, the authors focus on theories and methods that fall under the umbrella of actor-critic methods for machine learning. They concentrate on establishing stability during the learning phase and the execution phase, and adaptive model-based and data-driven reinforcement learning, to assist readers in the learning process, which typically relies on instantaneous input-output measurements. This monograph provides academic researchers with backgrounds in diverse disciplines from aerospace engineering to computer science, who are interested in optimal reinforcement learning functional analysis and functional approximation theory, with a good introduction to the use of model-based methods. The thorough treatment of an advanced treatment to control will also interest practitioners working in the chemical-process and power-supply industry. 
650 0 |a Control engineering. 
650 0 |a Calculus of variations. 
650 0 |a System theory. 
650 0 |a Electrical engineering. 
650 1 4 |a Control and Systems Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/T19010 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization.  |0 http://scigraph.springernature.com/things/product-market-codes/M26016 
650 2 4 |a Systems Theory, Control.  |0 http://scigraph.springernature.com/things/product-market-codes/M13070 
650 2 4 |a Communications Engineering, Networks.  |0 http://scigraph.springernature.com/things/product-market-codes/T24035 
700 1 |a Walters, Patrick.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Rosenfeld, Joel.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Dixon, Warren.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319783833 
776 0 8 |i Printed edition:  |z 9783319783857 
776 0 8 |i Printed edition:  |z 9783030086893 
830 0 |a Communications and Control Engineering,  |x 0178-5354 
856 4 0 |u https://doi.org/10.1007/978-3-319-78384-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)