Reinforcement Learning for Optimal Feedback Control A Lyapunov-Based Approach /

Reinforcement Learning for Optimal Feedback Control develops model-based and data-driven reinforcement learning methods for solving optimal control problems in nonlinear deterministic dynamical systems. In order to achieve learning under uncertainty, data-driven methods for identifying system models...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Kamalapurkar, Rushikesh (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Walters, Patrick (http://id.loc.gov/vocabulary/relators/aut), Rosenfeld, Joel (http://id.loc.gov/vocabulary/relators/aut), Dixon, Warren (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Communications and Control Engineering,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Chapter 1. Optimal control
  • Chapter 2. Approximate dynamic programming
  • Chapter 3. Excitation-based online approximate optimal control
  • Chapter 4. Model-based reinforcement learning for approximate optimal control
  • Chapter 5. Differential Graphical Games
  • Chapter 6. Applications
  • Chapter 7. Computational considerations
  • Reference
  • Index.