A Parametric Approach to Nonparametric Statistics

This book demonstrates that nonparametric statistics can be taught from a parametric point of view. As a result, one can exploit various parametric tools such as the use of the likelihood function, penalized likelihood and score functions to not only derive well-known tests but to also go beyond and...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Alvo, Mayer (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Yu, Philip L. H. (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Springer Series in the Data Sciences,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03233nam a2200517 4500
001 978-3-319-94153-0
003 DE-He213
005 20191023162158.0
007 cr nn 008mamaa
008 181012s2018 gw | s |||| 0|eng d
020 |a 9783319941530  |9 978-3-319-94153-0 
024 7 |a 10.1007/978-3-319-94153-0  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Alvo, Mayer.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 2 |a A Parametric Approach to Nonparametric Statistics  |h [electronic resource] /  |c by Mayer Alvo, Philip L. H. Yu. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XIV, 279 p. 15 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in the Data Sciences,  |x 2365-5674 
505 0 |a I. Introduction and Fundamentals -- Introduction -- Fundamental Concepts in Parametric Inference -- II. Modern Nonparametric Statistical Methods -- Smooth Goodness of Fit Tests -- One-Sample and Two-Sample Problems -- Multi-Sample Problems -- Tests for Trend and Association -- Optimal Rank Tests -- Efficiency -- III. Selected Applications -- Multiple Change-Point Problems -- Bayesian Models for Ranking Data -- Analysis of Censored Data -- A. Description of Data Sets. 
520 |a This book demonstrates that nonparametric statistics can be taught from a parametric point of view. As a result, one can exploit various parametric tools such as the use of the likelihood function, penalized likelihood and score functions to not only derive well-known tests but to also go beyond and make use of Bayesian methods to analyze ranking data. The book bridges the gap between parametric and nonparametric statistics and presents the best practices of the former while enjoying the robustness properties of the latter. This book can be used in a graduate course in nonparametrics, with parts being accessible to senior undergraduates. In addition, the book will be of wide interest to statisticians and researchers in applied fields. 
650 0 |a Probabilities. 
650 0 |a Statistics . 
650 1 4 |a Probability Theory and Stochastic Processes.  |0 http://scigraph.springernature.com/things/product-market-codes/M27004 
650 2 4 |a Statistical Theory and Methods.  |0 http://scigraph.springernature.com/things/product-market-codes/S11001 
700 1 |a Yu, Philip L. H.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319941523 
776 0 8 |i Printed edition:  |z 9783319941547 
776 0 8 |i Printed edition:  |z 9783030068042 
830 0 |a Springer Series in the Data Sciences,  |x 2365-5674 
856 4 0 |u https://doi.org/10.1007/978-3-319-94153-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)