Enhanced Optical and Electric Manipulation of a Quantum Gas of KRb Molecules

This thesis describes significant advances in experimental capabilities using ultracold polar molecules. While ultracold polar molecules are an idyllic platform for quantum chemistry and quantum many-body physics, molecular samples prior to this work failed to be quantum degenerate, were plagued by...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Covey, Jacob P. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Springer Theses, Recognizing Outstanding Ph.D. Research,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04656nam a2200541 4500
001 978-3-319-98107-9
003 DE-He213
005 20191028211600.0
007 cr nn 008mamaa
008 181001s2018 gw | s |||| 0|eng d
020 |a 9783319981079  |9 978-3-319-98107-9 
024 7 |a 10.1007/978-3-319-98107-9  |2 doi 
040 |d GrThAP 
050 4 |a QC175.16.C6 
072 7 |a PHM  |2 bicssc 
072 7 |a SCI057000  |2 bisacsh 
072 7 |a PHM  |2 thema 
082 0 4 |a 539  |2 23 
100 1 |a Covey, Jacob P.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Enhanced Optical and Electric Manipulation of a Quantum Gas of KRb Molecules  |h [electronic resource] /  |c by Jacob P. Covey. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XVI, 249 p. 148 illus., 142 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
505 0 |a Chapter1. Introduction -- Chapter2. Experimental Background and Overview -- Chapter 3. Quantum-State Controlled Chemical Reactions and Dipolar Collisions -- Chapter 4. Suppression of Chemical Reactions in a 3D Lattice -- Chapter 5. Quantum Magnetism with Polar Molecules in a 3D Optical Lattice -- Chapter 6. A Low Entropy Quantum Gas of Polar Molecules in a 3D Optical Lattice -- Chapter 7. The New Apparatus - Enhanced Optical and Electric Manipulation of Ultracold Polar Molecules -- Chapter 8. Designing, Building and Testing the New Apparatus -- Chapter 9. Experimental Procedure - Making Molecules in the New Apparatus -- Chapter 10. New Physics with the New Apparatus - High Resolution Optical Detection and Large, Stable Electric Fields -- Chapter 11. Outlook. 
520 |a This thesis describes significant advances in experimental capabilities using ultracold polar molecules. While ultracold polar molecules are an idyllic platform for quantum chemistry and quantum many-body physics, molecular samples prior to this work failed to be quantum degenerate, were plagued by chemical reactions, and lacked any evidence of many-body physics. These limitations were overcome by loading molecules into an optical lattice to control and eliminate collisions and hence chemical reactions. This led to observations of many-body spin dynamics using rotational states as a pseudo-spin, and the realization of quantum magnetism with long-range interactions and strong many-body correlations. Further, a 'quantum synthesis' technique based on atomic insulators allowed the author to increase the filling fraction of the molecules in the lattice to 30%, a substantial advance which corresponds to an entropy-per-molecule entering the quantum degenerate regime and surpasses the so-called percolations threshold where long-range spin propagation is expected. Lastly, this work describes the design, construction, testing, and implementation of a novel apparatus for controlling polar molecules. It provides access to: high-resolution molecular detection and addressing; large, versatile static electric fields; and microwave-frequency electric fields for driving rotational transitions with arbitrary polarization. Further, the yield of molecules in this apparatus has been demonstrated to exceed 10^5, which is a substantial improvement beyond the prior apparatus, and an excellent starting condition for direct evaporative cooling to quantum degeneracy. 
650 0 |a Phase transformations (Statistical physics). 
650 0 |a Condensed materials. 
650 0 |a Atoms. 
650 0 |a Physics. 
650 0 |a Low temperature physics. 
650 0 |a Low temperatures. 
650 1 4 |a Quantum Gases and Condensates.  |0 http://scigraph.springernature.com/things/product-market-codes/P24033 
650 2 4 |a Atoms and Molecules in Strong Fields, Laser Matter Interaction.  |0 http://scigraph.springernature.com/things/product-market-codes/P24025 
650 2 4 |a Low Temperature Physics.  |0 http://scigraph.springernature.com/things/product-market-codes/P25130 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319981062 
776 0 8 |i Printed edition:  |z 9783319981086 
776 0 8 |i Printed edition:  |z 9783030074524 
830 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
856 4 0 |u https://doi.org/10.1007/978-3-319-98107-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)