Dynamics of Parallel Robots

This book establishes recursive relations concerning kinematics and dynamics of constrained robotic systems. It uses matrix modeling to determine the connectivity conditions on the relative velocities and accelerations in order to compare two efficient energetic ways in dynamics modeling: the princi...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Staicu, Stefan (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Parallel Robots: Theory and Applications,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 06392nam a2200553 4500
001 978-3-319-99522-9
003 DE-He213
005 20191027051133.0
007 cr nn 008mamaa
008 181110s2019 gw | s |||| 0|eng d
020 |a 9783319995229  |9 978-3-319-99522-9 
024 7 |a 10.1007/978-3-319-99522-9  |2 doi 
040 |d GrThAP 
050 4 |a TJ210.2-211.495 
050 4 |a TJ163.12 
072 7 |a TJFM  |2 bicssc 
072 7 |a TEC004000  |2 bisacsh 
072 7 |a TJFM  |2 thema 
072 7 |a TJFD  |2 thema 
082 0 4 |a 629.8  |2 23 
100 1 |a Staicu, Stefan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Dynamics of Parallel Robots  |h [electronic resource] /  |c by Stefan Staicu. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XVII, 326 p. 179 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Parallel Robots: Theory and Applications,  |x 2524-6232 
505 0 |a 1 Introduction -- 1.1 Robotic systems -- 1.2 Historical development -- 1.3 Mechanics of robots -- 2 Matrix kinematics of the rigid body -- 2.1 Position and orientation of a rigid body -- 2.2 Velocity field -- 2.3 Acceleration field -- 2.4 Twist of velocity field of a rigid body -- 2.5 Types of rigid body motions -- 3 Matrix kinematics of composed motion -- 3.1 Kinematics of composed motion of a point -- 3.2 Kinematics of composed motion of a rigid body -- 3.3 Application to kinematics analysis of mechanisms -- 4 Kinetics of the rigid body -- 4.1 Centre of mass and tensor of static moments of a rigid body -- 4.2 Moments of inertia of a rigid body -- 4.3 Kinetic impulse of a system of particles -- 4.4 Kinetic moment of a rigid body -- 4.5 Kinetic energy of a rigid body -- 4.6 Power and work of the forces acting on a system of particles -- 4.7 Power and work of the forces acting on a rigid body -- 5 Dynamics of the rigid body -- 5.1 Fundamental system of differential equations of motion for a system of particles -- 5.2 Theorem of kinetic impulse -- 5.3 Theorem of kinetic moment -- 5.4 Theorem of kinetic moment with respect to a translating frame -- 5.5 Theorem of kinetic energy -- 5.6 Conservation of mechanical energy -- 5.7 Theorem of kinetic energy with respect to a translating frame -- 5.8 Equations of motion in dynamics of the rigid body -- 6 Analytical Mechanics -- 6.1 Principle of virtual work -- 6.2 D'Alembert principle -- 6.3 Lagrange equations -- 6.4 Canonical Hamiltonian equations -- 7 Dynamics of constrained robotic systems -- 7.1 Geometric model of the robot -- 7.2 Velocities and accelerations -- 7.3 Equations of motion -- 7.4 Advantages of the present method -- 7.5 Application to dynamics analysis of mechanisms -- 8 Planar parallel robots -- 8.1 Power requirement comparison in dynamics of the 3-PRR planar parallel robot -- 8.2 Internal reaction joint forces in dynamics of the 3-RRR planar parallel robot -- 8.3 Inverse kinematics and dynamics of a 3-PRP planar parallel robot -- 9 Spatial parallel robots -- 9.1 Dynamics modelling of Delta translational parallel robot -- 9.2 Inverse dynamics of Agile Wrist spherical parallel robot -- 9.3 Dynamics of the 6-6 Stewart parallel manipulator -- 9.4 Internal joint forces in dynamics of a 3-RPS parallel manipulator -- 10 Geared parallel mechanisms -- 10.1 Kinematics and dynamics analysis of the Minuteman cover drive -- 10.2 Inverse dynamics of a 2-DOF orienting gear train -- 10.3 Dynamics analysis of the Cincinnati-Milacron wrist robot -- 11 Mobile wheeled robots -- 11.1 Kinematics and dynamics of a mobile robot provided with caster wheel -- 11.2 Dynamics of the non-holonomic two-wheeled pendulum robot -- 12 Kinematics and dynamics of a hybrid parallel manipulator -- 12.1 Structural description of the hybrid parallel manipulator -- 12.2 Kinematics analysis -- 12.3 Inverse dynamics model -- References. 
520 |a This book establishes recursive relations concerning kinematics and dynamics of constrained robotic systems. It uses matrix modeling to determine the connectivity conditions on the relative velocities and accelerations in order to compare two efficient energetic ways in dynamics modeling: the principle of virtual work, and the formalism of Lagrange's equations. First, a brief fundamental theory is presented on matrix mechanics of the rigid body, which is then developed in the following five chapters treating matrix kinematics of the rigid body, matrix kinematics of the composed motion, kinetics of the rigid body, dynamics of the rigid body, and analytical mechanics. By using a set of successive mobile frames, the geometrical properties and the kinematics of the vector system of velocities and accelerations for each element of the robot are analysed. The dynamics problem is solved in two energetic ways: using an approach based on the principle of virtual work and applying the formalism of Lagrange's equations of the second kind. These are shown to be useful for real-time control of the robot's evolution. Then the recursive matrix method is applied to the kinematics and dynamics analysis of five distinct case studies: planar parallel manipulators, spatial parallel robots, planetary gear trains, mobile wheeled robots and, finally, two-module hybrid parallel robots. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Mechatronics. 
650 0 |a Machinery. 
650 0 |a Artificial intelligence. 
650 1 4 |a Control, Robotics, Mechatronics.  |0 http://scigraph.springernature.com/things/product-market-codes/T19000 
650 2 4 |a Machinery and Machine Elements.  |0 http://scigraph.springernature.com/things/product-market-codes/T17039 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319995212 
776 0 8 |i Printed edition:  |z 9783319995236 
776 0 8 |i Printed edition:  |z 9783030076047 
830 0 |a Parallel Robots: Theory and Applications,  |x 2524-6232 
856 4 0 |u https://doi.org/10.1007/978-3-319-99522-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-INR 
950 |a Intelligent Technologies and Robotics (Springer-42732)