C^\infinity - Differentiable Spaces

The volume develops the foundations of differential geometry so as to include finite-dimensional spaces with singularities and nilpotent functions, at the same level as is standard in the elementary theory of schemes and analytic spaces. The theory of differentiable spaces is developed to the point...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Navarro González, Juan A. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Sancho de Salas, Juan B. (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2003.
Έκδοση:1st ed. 2003.
Σειρά:Lecture Notes in Mathematics, 1824
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03421nam a2200529 4500
001 978-3-540-39665-9
003 DE-He213
005 20191024022104.0
007 cr nn 008mamaa
008 121227s2003 gw | s |||| 0|eng d
020 |a 9783540396659  |9 978-3-540-39665-9 
024 7 |a 10.1007/b13465  |2 doi 
040 |d GrThAP 
050 4 |a QA614-614.97 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBKS  |2 thema 
082 0 4 |a 514.74  |2 23 
100 1 |a Navarro González, Juan A.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a C^\infinity - Differentiable Spaces  |h [electronic resource] /  |c by Juan A. Navarro González, Juan B. Sancho de Salas. 
250 |a 1st ed. 2003. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2003. 
300 |a XVI, 196 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1824 
505 0 |a Introduction -- 1. Differentiable Manifolds -- 2. Differentiable Algebras -- 3. Differentiable Spaces -- 4. Topology of Differentiable Spaces -- 5. Embeddings -- 6. Topological Tensor Products -- 7. Fibred Products -- 8. Topological Localization -- 9. Finite Morphisms -- 10. Smooth Morphisms -- 11. Quotients by Compact Lie Groups -- A. Sheaves of Fréchet Modules -- B. Space of Jets -- References -- Index. 
520 |a The volume develops the foundations of differential geometry so as to include finite-dimensional spaces with singularities and nilpotent functions, at the same level as is standard in the elementary theory of schemes and analytic spaces. The theory of differentiable spaces is developed to the point of providing a handy tool including arbitrary base changes (hence fibred products, intersections and fibres of morphisms), infinitesimal neighbourhoods, sheaves of relative differentials, quotients by actions of compact Lie groups and a theory of sheaves of Fréchet modules paralleling the useful theory of quasi-coherent sheaves on schemes. These notes fit naturally in the theory of C^\infinity-rings and C^\infinity-schemes, as well as in the framework of Spallek's C^\infinity-standard differentiable spaces, and they require a certain familiarity with commutative algebra, sheaf theory, rings of differentiable functions and Fréchet spaces. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 1 4 |a Global Analysis and Analysis on Manifolds.  |0 http://scigraph.springernature.com/things/product-market-codes/M12082 
650 2 4 |a Commutative Rings and Algebras.  |0 http://scigraph.springernature.com/things/product-market-codes/M11043 
700 1 |a Sancho de Salas, Juan B.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540200727 
776 0 8 |i Printed edition:  |z 9783662161562 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1824 
856 4 0 |u https://doi.org/10.1007/b13465  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)