Geometric Mechanics

Geometric Mechanics here means mechanics on a pseudo-riemannian manifold and the main goal is the study of some mechanical models and concepts, with emphasis on the intrinsic and geometric aspects arising in classical problems. The first seven chapters are written in the spirit of Newtonian Mechanic...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Oliva, Waldyr Muniz (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2002.
Έκδοση:1st ed. 2002.
Σειρά:Lecture Notes in Mathematics, 1798
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03102nam a2200517 4500
001 978-3-540-45795-4
003 DE-He213
005 20191028081520.0
007 cr nn 008mamaa
008 121227s2002 gw | s |||| 0|eng d
020 |a 9783540457954  |9 978-3-540-45795-4 
024 7 |a 10.1007/b84214  |2 doi 
040 |d GrThAP 
050 4 |a QC19.2-20.85 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
072 7 |a PHU  |2 thema 
082 0 4 |a 530.1  |2 23 
100 1 |a Oliva, Waldyr Muniz.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Geometric Mechanics  |h [electronic resource] /  |c by Waldyr Muniz Oliva. 
250 |a 1st ed. 2002. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2002. 
300 |a XII, 276 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1798 
505 0 |a Introduction -- Differentiable manifolds -- Vector fields, differential forms and tensor fields -- Pseudo-riemannian manifolds -- Newtonian mechanics -- Mechanical systems on riemannian manifolds -- Mechanical Systems with non-holonomic constraints -- Hyperbolicity and Anosov systems -- Vakonomic mechanics -- Special relativity -- General relativity -- Appendix A: Hamiltonian and Lagrangian formalism -- Appendix B: Möbius transformations and the Lorentz group -- Appendix C: Quasi-Maxwell equations -- Appendix D: Viscosity solutions and Aubry-Mather theory. 
520 |a Geometric Mechanics here means mechanics on a pseudo-riemannian manifold and the main goal is the study of some mechanical models and concepts, with emphasis on the intrinsic and geometric aspects arising in classical problems. The first seven chapters are written in the spirit of Newtonian Mechanics while the last two ones as well as two of the four appendices describe the foundations and some aspects of Special and General Relativity. All the material has a coordinate free presentation but, for the sake of motivation, many examples and exercises are included in order to exhibit the desirable flavor of physical applications. 
650 0 |a Mathematical physics. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 1 4 |a Theoretical, Mathematical and Computational Physics.  |0 http://scigraph.springernature.com/things/product-market-codes/P19005 
650 2 4 |a Dynamical Systems and Ergodic Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/M1204X 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540442424 
776 0 8 |i Printed edition:  |z 9783662162538 
776 0 8 |i Printed edition:  |z 9783662601495 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1798 
856 4 0 |u https://doi.org/10.1007/b84214  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)