Burgers-KPZ Turbulence Göttingen Lectures /

These lecture notes are woven around the subject of Burgers' turbulence/KPZ model of interface growth, a study of the nonlinear parabolic equation with random initial data. The analysis is conducted mostly in the space-time domain, with less attention paid to the frequency-domain picture. Howev...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Woyczynski, Wojbor A. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 1998.
Έκδοση:1st ed. 1998.
Σειρά:Lecture Notes in Mathematics, 1700
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03084nam a2200493 4500
001 978-3-540-49480-5
003 DE-He213
005 20191026121602.0
007 cr nn 008mamaa
008 121227s1998 gw | s |||| 0|eng d
020 |a 9783540494805  |9 978-3-540-49480-5 
024 7 |a 10.1007/BFb0093107  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
082 0 4 |a 515.353  |2 23 
100 1 |a Woyczynski, Wojbor A.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Burgers-KPZ Turbulence  |h [electronic resource] :  |b Göttingen Lectures /  |c by Wojbor A. Woyczynski. 
250 |a 1st ed. 1998. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 1998. 
300 |a XII, 328 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1700 
505 0 |a Shock waves and the large scale structure (LSS) of the universe -- Hydrodynamic limits, nonlinear diffusions, and propagation of chaos -- Hopf-Cole formula and its asymptotic analysis -- Statistical description, parabolic approximation -- Hyperbolic approximation and inviscid limit -- Forced Burgers turbulence -- Passive tracer transport in Burgers' and related flows -- Fractal Burgers-KPZ models. 
520 |a These lecture notes are woven around the subject of Burgers' turbulence/KPZ model of interface growth, a study of the nonlinear parabolic equation with random initial data. The analysis is conducted mostly in the space-time domain, with less attention paid to the frequency-domain picture. However, the bibliography contains a more complete information about other directions in the field which over the last decade enjoyed a vigorous expansion. The notes are addressed to a diverse audience, including mathematicians, statisticians, physicists, fluid dynamicists and engineers, and contain both rigorous and heuristic arguments. Because of the multidisciplinary audience, the notes also include a concise exposition of some classical topics in probability theory, such as Brownian motion, Wiener polynomial chaos, etc. 
650 0 |a Partial differential equations. 
650 0 |a Probabilities. 
650 1 4 |a Partial Differential Equations.  |0 http://scigraph.springernature.com/things/product-market-codes/M12155 
650 2 4 |a Probability Theory and Stochastic Processes.  |0 http://scigraph.springernature.com/things/product-market-codes/M27004 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662181584 
776 0 8 |i Printed edition:  |z 9783540652373 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1700 
856 4 0 |u https://doi.org/10.1007/BFb0093107  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)