Stochastic Discrete Event Systems Modeling, Evaluation, Applications /

The behavior of many technical systems important in everyday life can be described using discrete states and state-changing events. Stochastic discrete-event systems (SDES) capture the randomness in choices and over time due to activity delays and the probabilities of decisions. The starting point f...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Zimmermann, Armin (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2008.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03964nam a22005175i 4500
001 978-3-540-74173-2
003 DE-He213
005 20151204185903.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540741732  |9 978-3-540-74173-2 
024 7 |a 10.1007/978-3-540-74173-2  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a UYAM  |2 bicssc 
072 7 |a UFM  |2 bicssc 
072 7 |a COM077000  |2 bisacsh 
082 0 4 |a 005.55  |2 23 
100 1 |a Zimmermann, Armin.  |e author. 
245 1 0 |a Stochastic Discrete Event Systems  |h [electronic resource] :  |b Modeling, Evaluation, Applications /  |c by Armin Zimmermann. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2008. 
300 |a XVI, 392 p. 86 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Modeling -- A Unified Description for Stochastic Discrete Event Systems -- Stochastic Timed Automata -- Queuing Models -- Simple Petri Nets -- Colored Petri Nets -- Evaluation -- Standard Quantitative Evaluation Methods for SDES -- An Iterative Approximation Method -- Efficient Simulation of SDES Models -- System Optimization -- Model-Based Direct Control -- Software Tool Support -- Applications -- Optimization of a Manufacturing System -- Communication System Performability Evaluation -- Supply Chain Performance Evaluation and Design -- Model-Based Design and Control of a Production Cell -- Summary and Outlook. 
520 |a The behavior of many technical systems important in everyday life can be described using discrete states and state-changing events. Stochastic discrete-event systems (SDES) capture the randomness in choices and over time due to activity delays and the probabilities of decisions. The starting point for the evaluation of quantitative issues like performance and dependability is a formal description of the system of interest in a model. Armin Zimmermann delivers a coherent and comprehensive overview on modeling with and quantitative evaluation of SDES. An abstract model class for SDES is presented as a pivotal unifying result. Several important model classes, including queuing networks, Petri nets and automata, are detailed together with their formal translation into this abstract model class. Standard and recently developed algorithms for the performance evaluation, optimization and control of SDES are presented in the context of the abstract model class. The necessary software tool support is also covered. The book is completed with nontrivial examples from areas like manufacturing control, performance of communication systems, and supply-chain management, highlighting the application of the techniques presented. For researchers and graduate students this monograph summarizes the body of knowledge for modeling and evaluating SDES, while bringing it to a new abstraction level with the introduction of a new and unifying framework. In addition, the extensive reference list is an excellent starting point for further detailed reading and research. 
650 0 |a Computer science. 
650 0 |a Computer system failures. 
650 0 |a Mathematical statistics. 
650 0 |a Computer simulation. 
650 0 |a Mathematical models. 
650 0 |a Probabilities. 
650 1 4 |a Computer Science. 
650 2 4 |a Probability and Statistics in Computer Science. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a System Performance and Evaluation. 
650 2 4 |a Simulation and Modeling. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540741725 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-74173-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)