Simplicial Complexes of Graphs

A graph complex is a finite family of graphs closed under deletion of edges. Graph complexes show up naturally in many different areas of mathematics, including commutative algebra, geometry, and knot theory. Identifying each graph with its edge set, one may view a graph complex as a simplicial comp...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Jonsson, Jakob (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2008.
Σειρά:Lecture Notes in Mathematics, 1928
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03535nam a22005295i 4500
001 978-3-540-75859-4
003 DE-He213
005 20151204144146.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540758594  |9 978-3-540-75859-4 
024 7 |a 10.1007/978-3-540-75859-4  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBD  |2 bicssc 
072 7 |a MAT008000  |2 bisacsh 
082 0 4 |a 511.1  |2 23 
100 1 |a Jonsson, Jakob.  |e author. 
245 1 0 |a Simplicial Complexes of Graphs  |h [electronic resource] /  |c by Jakob Jonsson. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2008. 
300 |a XIV, 382 p. 34 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1928 
505 0 |a and Basic Concepts -- and Overview -- Abstract Graphs and Set Systems -- Simplicial Topology -- Tools -- Discrete Morse Theory -- Decision Trees -- Miscellaneous Results -- Overview of Graph Complexes -- Graph Properties -- Dihedral Graph Properties -- Digraph Properties -- Main Goals and Proof Techniques -- Vertex Degree -- Matchings -- Graphs of Bounded Degree -- Cycles and Crossings -- Forests and Matroids -- Bipartite Graphs -- Directed Variants of Forests and Bipartite Graphs -- Noncrossing Graphs -- Non-Hamiltonian Graphs -- Connectivity -- Disconnected Graphs -- Not 2-connected Graphs -- Not 3-connected Graphs and Beyond -- Dihedral Variants of k-connected Graphs -- Directed Variants of Connected Graphs -- Not 2-edge-connected Graphs -- Cliques and Stable Sets -- Graphs Avoiding k-matchings -- t-colorable Graphs -- Graphs and Hypergraphs with Bounded Covering Number -- Open Problems -- Open Problems. 
520 |a A graph complex is a finite family of graphs closed under deletion of edges. Graph complexes show up naturally in many different areas of mathematics, including commutative algebra, geometry, and knot theory. Identifying each graph with its edge set, one may view a graph complex as a simplicial complex and hence interpret it as a geometric object. This volume examines topological properties of graph complexes, focusing on homotopy type and homology. Many of the proofs are based on Robin Forman's discrete version of Morse theory. As a byproduct, this volume also provides a loosely defined toolbox for attacking problems in topological combinatorics via discrete Morse theory. In terms of simplicity and power, arguably the most efficient tool is Forman's divide and conquer approach via decision trees; it is successfully applied to a large number of graph and digraph complexes. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Ordered algebraic structures. 
650 0 |a Algebraic topology. 
650 0 |a Discrete mathematics. 
650 0 |a Combinatorics. 
650 1 4 |a Mathematics. 
650 2 4 |a Discrete Mathematics. 
650 2 4 |a Combinatorics. 
650 2 4 |a Algebraic Topology. 
650 2 4 |a Order, Lattices, Ordered Algebraic Structures. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540758587 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1928 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-75859-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)