Applied Proof Theory: Proof Interpretations and Their Use in Mathematics

Ulrich Kohlenbach presents an applied form of proof theory that has led in recent years to new results in number theory, approximation theory, nonlinear analysis, geodesic geometry and ergodic theory (among others). This applied approach is based on logical transformations (so-called proof interpret...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Kohlenbach, Ulrich (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2008.
Σειρά:Springer Monographs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03688nam a22005295i 4500
001 978-3-540-77533-1
003 DE-He213
005 20151204180933.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540775331  |9 978-3-540-77533-1 
024 7 |a 10.1007/978-3-540-77533-1  |2 doi 
040 |d GrThAP 
050 4 |a QA8.9-10.3 
072 7 |a PBC  |2 bicssc 
072 7 |a PBCD  |2 bicssc 
072 7 |a MAT018000  |2 bisacsh 
082 0 4 |a 511.3  |2 23 
100 1 |a Kohlenbach, Ulrich.  |e author. 
245 1 0 |a Applied Proof Theory: Proof Interpretations and Their Use in Mathematics  |h [electronic resource] /  |c by Ulrich Kohlenbach. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2008. 
300 |a XX, 536 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Monographs in Mathematics,  |x 1439-7382 
505 0 |a Unwinding proofs (‘Proof Mining’) -- Intuitionistic and classical arithmetic in all finite types -- Representation of Polish metric spaces -- Modified realizability -- Majorizability and the fan rule -- Semi-intuitionistic systems and monotone modified realizability -- Gödel’s functional (‘Dialectica’) interpretation -- Semi-intuitionistic systems and monotone functional interpretation -- Systems based on classical logic and functional interpretation -- Functional interpretation of full classical analysis -- A non-standard principle of uniform boundedness -- Elimination of monotone Skolem functions -- The Friedman A-translation -- Applications to analysis: general metatheorems I -- Case study I: Uniqueness proofs in approximation theory -- Applications to analysis: general metatheorems II -- Case study II: Applications to the fixed point theory of nonexpansive mappings -- Final comments. 
520 |a Ulrich Kohlenbach presents an applied form of proof theory that has led in recent years to new results in number theory, approximation theory, nonlinear analysis, geodesic geometry and ergodic theory (among others). This applied approach is based on logical transformations (so-called proof interpretations) and concerns the extraction of effective data (such as bounds) from prima facie ineffective proofs as well as new qualitative results such as independence of solutions from certain parameters, generalizations of proofs by elimination of premises. The book first develops the necessary logical machinery emphasizing novel forms of Gödel's famous functional ('Dialectica') interpretation. It then establishes general logical metatheorems that connect these techniques with concrete mathematics. Finally, two extended case studies (one in approximation theory and one in fixed point theory) show in detail how this machinery can be applied to concrete proofs in different areas of mathematics. . 
650 0 |a Mathematics. 
650 0 |a Approximation theory. 
650 0 |a Functional analysis. 
650 0 |a Operator theory. 
650 0 |a Mathematical logic. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematical Logic and Foundations. 
650 2 4 |a Mathematics, general. 
650 2 4 |a Approximations and Expansions. 
650 2 4 |a Operator Theory. 
650 2 4 |a Functional Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540775324 
830 0 |a Springer Monographs in Mathematics,  |x 1439-7382 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-77533-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)